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S1: Particle Equations of Motion
S1A: Introduction: The Lorentz Force Equation

The Lorentz force equation of a charged particle is given by (SI Units):

d
Ep,,;(t) = ¢; [E(x;,t) + vi(t)xB(x, t)]
m;, q; - particle mass, charge 1 = particle index
x;(t) ... particle coordinate ¢ = time
Pz’(t) = my; (t)vz- (t) .... particle momentum
d -
v, (t) = gxi(t) = ¢(;(t) ... particle velocity
vi(t) = 1 .... particle gamma factor
V1= 3 ()
Total Applied Self
Electric Field: E(x,t) = E%xt) + E°’(x,t)
Magnetic Field: B(x,t) = B%x,t) + B*(x,t)
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S1B: Applied Fields used to Focus, Bend, and Accelerate Beam

Transverse Focusing Optics for focusing:
Electric Quadrupole Magnetic Quadrupole Solenoid

Coil (Azimuthally Symmetric)

Conducting Beam Pipe: » — 7,

Electrodes: z2 — y* = Tr2 Poles: zy — :i:%
Dipole Bends:
Electric x-direction bend Magnetic x-direction bend
Y A Yy Coils
e
+V -V
—_—
- ¢
E¢ L
e
S~
Transverse Particle Equations
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Longitudinal Acceleration:
RF Cavity

SM Lund, NE 290H, Spring 2009

Induction Cell

Pulse Power
Feed

Magnetic

Gap
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S1C: Machine Lattice

Applied field structures are often arraigned in a regular (periodic) lattice for beam
transport/acceleration:

a A A
U y J

Focus Accel Focus Accel Focus

Quadrupole  RF Cavity
Solenoid Induction Cell

+ Sometimes functions like bending/focusing are combined into a single element

Example — Linear FODO lattice (symmetric quadrupole doublet)

A
OO

Focus Accel DeFocus Accel Focus

Quadrupole Quadrupole Quadrupole
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 11



Lattices for rings and some beam insertion/extraction sections also incorporate
bends and more complicated periodic structures:

Lattice
Period

Sector .

One Lattice Period

If
b L N

Ring Lattice: 12 Periods
(SIS—18, GSI)

Triplet
Quadrupoles *

*Lattices to insert beam into and out of ring further complicate
*Acceleration cells also present

(typically several RF cavities at one or more location)
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 12



S1D: Self fields

Self-fields are generated by the distribution of beam particles:
+ Charges

+ Currents
Particle at Rest Particle in Motion
ure electrostatic
(p ) ) . oG
ES
Obtain from
= > Lorentz boost q V
of rest-frame field:
see Jackson,
Classical Y
Y .
B =0 Electrodynamics
BS

+ Superimpose for all particles in the beam distribution ( q { v
+ Accelerating particles also radiate

- We neglect electromagnetic radiation in this class
(see: J.J. Barnard, Intro Lectures)

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations
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The electric (E ) and magnetic ( B ) fields satisty the Maxwell Equations. The
linear structure of the Maxwell equations can be exploited to resolve the field into

Applied and Self-Field components:
E=E*+E°
B =B“ + B°
Applied Fields (often quasi-static) E® B¢
* Generated by elements in lattice

p* 10
V- -E* =2 a_ g0 =9
o V x B = pogJ* + wien E
Vx B = -2 pe v-BE=0

ot
p® = applied charge density I 2
J* = applied current density Ho€o
+ Boundary Conditions on E* and B*

* Boundary conditions depend on the total fields E, B
and if separated into Applied and Self-Field components, care can be required
+ System often solved as static boundary value problem and source free in the

region of the beam
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 14



/// Aside: Notation;

.0 90 .0
V = py yé’_y T 25~ - Cartesian Representation
A8+9\3+,\3 R  x=rcosb
= r— —_—— 7Z— -
o a7 By Cylindrical Representation y = rsind
0
= - Abbreviated Representation
9, .0 . .
= + ZE)_ - Resolved Abbreviated Representation
xL “ Resolved into Perpendicular (L)
and Parallel (Z ) components
=X | +Zz

In integrals, we denote:

/dga:---zf daz/ dy/ dZ'--Z/dZZEJ_[dZ---
/deL---:/ d:l:/ dy---z/ drr/ df ---
— 00 — 00 0 —TT
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Self-Fields (dynamic, evolve with beam)
+ Generated by particles in the beam

p° 1 0
V-E° = — V xB° = pugJ°+ ==—FE°

€0 Ho * 2 675

. 0 . V-B°=0

VX E = _EB 1 = particle index
p° = beam charge density (IV particles)
¢; = particle charge
= Z qi0|x — x;(1)] x; = particle coordinate

v; = particle velocity
J® = beam current density

0(x) = d(x)0(y)d(2)
— Z givi(t)d[x — x;(t)]  d(x) = Dirac-delta function
— N
Z = sum over
i=1 beam particles

+ Boundary Conditions on E® and B*®

from material structures, radiation conditions, etc.
SM Lund, NE 290H, Spring 2009

Transverse Particle Equations 16



In accelerators, there is ideally a single species of particle:

q; — g
m; — M

Large Simplification!
Multi-species results in more complex collective effects

Motion of particles within axial slices of the “bunch’ are highly directed:
Slice

Nl

= Mean axial velocity of

N’ particles in beam slice

0v;| < |Bp|c  Paraxial Approximation

There are typically many particles:

p° = Z ¢i0[x — x;(1)] J° = Z ¢ivi(1)o[x — x;(t)]

continuous N -
— P(X, t) charge-density == Bpep (X’ t)z current-density

continuous axial

SM Lund, NE 290H, Spring 2009
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The beam evolution is typically sufficiently slow (for heavy ions) where we can
neglect radiation and approximate the self-field Maxwell Equations as:
* See: J. J. Barnard, Intro. Lectures: Electrostatic Approximation

E° =—-V¢
B°=V x A A = z@
C
o 0 p°
2 — . = — —
Vg = 0x 8X¢ €0
+ Boundary Conditions on ¢

Vast Reduction of

self-field model:
But still complicated!

Resolve the Lorentz force acting on beam particles into
Applied and Self-Field terms:

Fz’(Xz’a t) = qE(XZ', t) -+ qvi(t) X B(Xi, t)

Applied:

Self-Field:

F{ = qE{ + qv; X Bf

F. =qE; + qv; x B}

SM Lund, NE 290H, Spring 2009

F; = F¢ + F:
E=E®+E°
B =B + B°

E*(x;,t) = E} etc.
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The self-field force can be simplified:
+ See also: J.J. Barnard, Intro. Lectures

Plug in self-field forms:

0 Neglect: Paraxial
Ff — qu + qv; X B*; cglect: Faraxia

:q[_g_ii+(ﬁb02+5 i) X (%xi% )

X=X,

J

Resolve into transverse (x and y) and longitudinal (z) components. After some
algebra, find:

g 9| i . 0]
T I
vy, 0% |, | 0z |,
Transverse  Longitudinal
1
=TT Axial relativistic gamma of beam

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 19



/I Aside: Singular Self Fields
In free space, the beam potential generated from the singular charge density:

iS N

Which diverges due to the i = term. ThlS divergence 1s essentially “erased”
when the continuous charge density 1s applied:

— Z qid[x —x;(t)] — p(x,1)

+ Effectively removes effect of collisions
+ See: J.J. Barnard, Intro Lectures for more details
- Find collisionless Vlasov model of evolution is often adequate 1/

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 20



The particle equations of motion in x, — v, phase-space variables become:

s Separate parts of ¢E; 4+ qv; x BY into transverse and longitudinal comp
Transverse

d
—X1li = Vi
de" T e |
d o e ] 99|
gp MV = (g ¥ abvez X B aBliva X 2Hma o
Applied 5-------S-é-1-,-f-------?-=
Longitudinal
d
7 %7 — Uz
a-—7—£——-
d C a . pa b N ol
ar Mivst) = (08 a(Uai By~ viBa) | —a g0
Applied T Solf

In the remainder of this (and most other) lectures, we analyze Transverse
Dynamics. Longitudinal Dynamics will be covered in J.J. Barnard lectures
+ Except near injector, acceleration is typically slow
e Fractional change in s, [y small over characteristic transverse dynamical
scales such as lattice period and betatron oscillation periods

» Regard Vb, Bp as specified functions given by the “acceleration schedule”
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 21



S1E: Equations of Motion 1n s and the Paraxial Approximation

In transverse accelerator dynamics, it is convenient to employ the axial coordinate
(s) of the particle in the accelerator as the independent variable:

I
s = 8; + / dt v,;(t)
Ay t:

Ay

? Time t Beam
Initial Bcam x
: S : -
Slice | Slice ©
t =t t
Transform: 5= 5 i Neglect
dt dt dt ds ds ds
Denote: ~ 3 dz;
dCBZ‘ / — b€ d
Vpi = ~ Bpcx; | s
;) d d Neglecting term consistent
— % dy; , with assumption of small
Vyi = % =~ ﬁbcyi longitudinal momentum spread
(paraxial approximation)

+ Procedure becomes more complicated when bends present: see S1H
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 22



In the paraxial approximation, x' and y' can be interpreted as the (small
magnitude) angles that the particles make the with the z-axis:

Uy Uy /
r — angle = v Boc =L Typical machine values:
Z
. . X'l < 50 mrad
Vyi Uy /
y — angle = — ~ = Y;
Vzj /6196

The angles will be small in the paraxial approximation:

2 2 2 2 /2 12
Viis Uy K Ppc” = e,y << 1

Since the spread of axial momentum/velocities is small in the paraxial

approximation, a thin axial slice of the beam maps to a thin axial slice and s can
also be thought of as the axial coordinate of the slice in the accelerator lattice

t
s s, +/ 47 By (D)
t.

2

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 23



Transverse particle equations of motion need to be expressed in s, not t

g ; e 1 8¢
—(my; v )i~ gEY . + cz X BY. +gB%v,, X72i—qg— ——
g v = aBLi S I BT
Term 1 Term 2
Transform Terms 1 and 2 in the particle equation of motion: d d
Term 1- d dx | ; d d dt ds
o MY ) = MUz | ViVzi 5 X134
at \"" g ds \ TP gL
—m ,02 d2 — ¥ +m iX ) i( U )
= m; 2 5 ~Li ds i) ds YiUzi
Term 1A Term 1B
Approximate:
2 d2 d2 2 2.1/

Term 1A:  mvyvl, —5X1; m”ybﬁbc oy ——5 X1 = myp 5 Cc X ;

zzdg

ds ds ds
~ mByc” (15) X4

d d d d
Term 1B:  m (—XJ_Z> Vyi— (ViVsi) =M (—Xﬂ) ﬁbcd— (vo0pC)
s

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 24



Using the approximations 1A and 1B gives for Term 1:

d dXJ—i) 2 2 [ " (760s)"
; ~m X, T X,
" (/Y dt s T (wB) T

Similarly we approximate in Term 2:

qB7, v Xz ~qBZ,BycX |, X Z

Using the reduced expressions for Terms 1 and 2 obtains the reduced transverse
equation of motion:

/
X”’[:—|_MX,’I:: q a'z—l— q iXBaZ
S (b)) T maBEc2T T meyBe +
aB7; ., . g 09
+ X|; XZ—
myBec” Byc® 0%y

+ Will be analyzed extensively in lectures that follow in various limits to
better understand structure of solutions

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 25



S1F: Summary: Transverse Particle Equations of Motion

(/‘Ybﬁb)l / q a
(765) LT M35 c2 Bl mMYeBpC mypBpc
q 0
v BEc? 0%
E“ = Applied Electric  Field d _ 1
B® = Applied Magnetic Field ds 1 — G;
V= Db

Ox Ox €0
+ Boundary Conditions on ¢

!/
XJ_—I—

* Drop particle i subscripts (in most cases) henceforth to simplify notation
* Neglects axial energy spread, bending, and electromagnetic radiation
* 7 factors different in applied and self-field terms:

. q
mry, 61;

In o 9. contibutions to V3

vy, = Kinematics

’Yb — Self-Magnetic Field Corrections (leading order)
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 26



S1G: Overview: Analysis to Come

Much of accelerator physics centers on understanding the evolution of beam
particles in 4-dimensional x-x' and y-y' phase space.

Typically, restricted 2-dimensional phase-space projections in x-x' and/or y-y' are
analyzed to simplify interpretations:

+ When forces are linear particles tend » Nonlinear force components distort
to move on ellipses of constant area orbits and cause undesirable effects
- Ellipse may elongate/shrink and - Growth of effective
rotate as beam evolves in lattice phase-space area
X A x" A

Ellipse Twists and Lengthens

Phase—Space ><'

Ellipse
Const Area

Particle
/J/ ;1/ -

X

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 27



The “effective” phase-space volume of a distribution of beam particles 1s of

fundamental interest
Effective area measure in

x-X' phase-space 1s the
x-emittance €,

“ue.

0.03—

Statistical ” Area” ~ we,

e = 4[(@?) L (%)L — (2a”)1]"/?

X' [rad]

RERRRRRR RN NN
—0.M& 0.0 0005 000DD 0005 0010 0015

X ml

We will find in statistical beam descriptions that:

Harder/Easier
— to focus beam
on small final spots

Larger/Smaller beam phase-space areas
(Larger/Smaller emittances)

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 28



Much of advanced accelerator physics centers on understanding and controlling
emittance growth due to nonlinear forces arising from both space-charge and the
applied focusing. In the remainder of the next few lectures we will review the
physics of transverse particle dynamics of particles moving in linear applied
fields. Later we will generalize concepts to include forces from space-charge and
nonlinear effects.

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 29



S1H: Bent Coordinate System and Particle Equations of

Motion with Dipole Bends and Axial Momentum Spread

The previous equations of motion can be applied to dipole bends provided the
x,y,z coordinate system is fixed. In practice, it can prove more convenient to

employ coordinates that follow the beam in a bend.

x Magnetic
i o Dipole Bend
- i Circular Path
Reference ____ o Straight Path 1 E ds = Rdf
Trajectory Y 2 ds = dz Tl
/ ©
! e~
Applied Field Region |
2 oA v, Straight Path
b= b,z “Nds = dz
&
’]éfxd =
_ en
©® = Bend Angle Conter
R = Bend Radius =N
s = Reference Trajectory Coordinate Reference
Trajectory

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations
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In this perspective, dipoles are adjusted given the design momentum of the
reference particle to bend the orbit through a radius R.
+ Bends usually only in one plane (say x)
- Implemented by a dipole applied field: £} or By
+ Easy to apply material analogously for y-plane bends, if necessary
Denote:

Po = MmYpPpc = design momentum

Then a magnetic x-bend through a radius R 1s specified by:

B® = B;” y = const in bend Analogous formula for
1 qB, Electric Bend will be derived
R Do in problem set
The particle rigidity is defined as ( | Bp]| read as one symbol called “B-Rho”):
_ Do mYPhC
[Bpl=— =
q q
1s often applied to express the bend result as:
1 B!
R |Bp

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 31



Comments on bends:
* R can be positive or negative depending on sign of By, /[Bp]
* For straight sections, R — oo ( or equivalently, B = 0)
+ Lattices often made from discrete element dipoles and straight sections with
separated function optics
- Bends sometimes provide “edge focus™ in a ring
- Sometimes elements for bending/focusing are combined
* For a ring, dipoles strengths are tuned with particle rigidity/momentum so the
reference orbit makes a closed path lap through the circular machine
- Dipoles adjusted as particles gain energy to maintain closed path
- In a Synchrotron dipoles and focusing elements are adjusted together
to maintain focusing and bending properties with energy gain.
This 1s the origin of the name “Synchrotron.”
+ Total bending strength of a ring in Tesla-meters limits the ultimately
achievable particle energy/momentum in the ring

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 32



//l Example: Typical separated function lattice in a Synchrotron

Focus Elements in Red
Bending Elements in Green

Lattice
Period

Sector .

Ring Lattice: 12 Periods
(SIS—18, GSI)

SM Lund, NE 290H, Spring 2009

One Lattice Period
(separated function)

Triplet I .

Quadrupoles Bt_andmg "
Dipoles
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For “off-momentum’ errors:

DPs = Po + Op
po = MypPpc = design momentum

Op = off- momentum

This will modify the particle equations of motion, particularly in cases where
there are bends since particles with different momenta will be bent at different
radii

Ps

ﬂ.

® B,y

g, m
ps=po+0p
Off Momentum {(High)

+ Not usual to have acceleration in bends
- Dipole bends and quadrupole focusing are sometimes combined

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 34



Transverse particle equations of motion including “off-momentum” effects:
+ See texts such as Edwards and Syphers for guidance on derivation steps
+ Full derivation is beyond needs/scope of this class

/ 1 1-90 51 q Eo
2+ (Vb/@b) 7+ [ ] T = + x
(7650) R?(s) 140 1+ R(s) mypfBic? (1+9)3
B q B; I q = Y — q 1 9¢
myyOpcl+0  mypBpcl+6 mry; Bac? 1+ 6 Ox
/ ECL Ba
y// 4 (Vb/@b) y/ _ q — Y _ n q T
(7650) myBic? (1+6)2  mylel+6
B q by o q 1 J¢
mYypBpc 1+ 0 mry;B2c? 1+ 0 dy
po = MmYypPpc = Design Momentum 1 B2(8)|pipole Do
e R - B Bel =77
= — = Fractional Momentum FError () [ Bp)
Po
Comments:

+ Design bends only in x and BZ“, E? contain no dipole terms (design orbit)
- Dipole components set via the design bend radius R(s)
» Equations contain only low-order terms in momentum spread 0

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 35



Comments continued:
+ Equations are often applied linearized in 9
+ Achromatic focusing lattices are often designed using equations with
momentum spread to obtain focal points independent of 0 to some order
+ x and y equations differ significantly due to bends modifying the x-equation
when R(s) 1s finite
+ It will be shown 1n the problems that for electric bends:
1 EZ (s)
R(s)  Bvc|Bp
* Applied fields for focusing: E§, B, BY
must be expressed 1n the bent x,y,s system of the reference orbit
- Includes error fields in dipoles

+ Self fields may also need to be solved taking into account bend terms
- Often can be neglected 1n Poisson's Equation

1 s, (1+£)2+8_2+ 1 0 1 0 b _P
1+ x/R O0x R/ Ox oy 1+xz/R0s |1+ x/R s B

if R — o0 52 ) 52 ) 3_2 o
reduces to familiar: ox?  Jy?  0s? €0

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 36




S2: Transverse Particle Equations of Motion in
Linear Focusing Channels
S2A: Introduction

7 (”Ybﬁb), / q a q a q a 1
i (765) v My 55 2 Fa = ’m’YbﬁbCBy " ’m’YbﬁbCBzy
g 09
my; Bzc? Ox
7 ('Yb/Bb)l / q a q a q a ./
o (705) T My G732 By + m%ﬁcha: - m%ﬁchzfv
qg 0¢
m’yb S 52c2 Oy

Equations previously derived under assumptions:

* No bends (fixed x-y-z coordinate system with no local bends)

# Paraxial equations (2%, y"% < 1)

* No dispersive effects (3, same all particles), acceleration allowed ( 3;, # const )
* Electrostatic and leading-order (in 3, ) self-magnetic interactions

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 37



The applied focusing fields
Electric:  E, B E?
Magnetic: B¢, B; B¢

must be specified as a function of s and the transverse particle coordinates x and y
to complete the description
*+ Consistent change in axial velocity ( Gyc ) due to E must be evaluated
- Typically due to RF cavities and/or induction cells
+ Restrict analysis to fields from applied focusing structures
Intense beam accelerators and transport lattices are designed to optimize
linear applied focusing forces with terms:

Electric:  E2 ~ (function of s) x (x or y)

E; ~ (function of s) X (z or y)

Magnetic: B ~ (function of s) x (z or y)
By

B¢ ~ (function of s)

2

(function of s) x (z or y)

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 38



Common situations that realize these linear applied focusing forms will be
overviewed:
+ Continuous Focusing (see: S2B)
+ Quadrupole Focusing
- Electric (see: S2C)
- Magnetic (see: S2D)
+ Solenoidal Focusing (see: S2E)

Other situations that will not be covered (typically more nonlinear optics):
+ Einzel Lens (see: J.J. Barnard, Intro Lectures)
+ Plasma Lens
+ Wire guiding

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations
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S2B: Continuous Focusing

Assume constant electric field applied focusing force:

B" =0 2 272
m ck
‘i:ng(_FE;’\ - — ’Ybﬁb 6OXL kéozconst>0
i 1 5 rad
B =0 k50l = —

Continuous focusing equations of motion:
+ Insert field components into linear applied field equations and collect terms

(78)’
(765)

Even this simple model can become complicated
* Space charge: ¢ must be calculated consistent with beam evolution
+ Acceleration: acts to damp orbits (see: S10)

q 0
mry; 322 0%

x| + x| 4+ kjoxL = —

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 40



Simple model in limit of no acceleration ( 7,3, ~ const ) and
negligible space-charge ( ¢ ~ const ):

x| + kéox 1 =0 — orbits simple harmonic oscillatons

General solution 1s elementary:

x1 =X (8i)cos[kgo(s — s;)] + [x' (5:)/kso] sin[kgo(s — ;)]

/

X'| = —kgox (s;)sin[kgo(s — s;)] + x| (8;) cos[kgo(s — 8;)]

x| (8;) = Initial coordinate

x'| (s;) = Initial angle

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations



/// Example: Particle Orbits in Continuous Focusing
Particle phase-space in x-x' with only applied field

kgo = 27 rad/m z(0) =1 mm
d~0 Bp=const 2'(0)=0

1] S
= os)
E 00}
? —0.5;—

-1.0F . . . . | . . . . | . . . . | . . . . 3
0.0 0.5 1.0 1.5 2.0
s [m]
Y |

X’ [mrad]

pY: AN
0.0 0.5 1.0 1.5 2.0
s Iml

+ Orbits in the applied field are just simple harmonic oscillators
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Problem with continuous focusing model:

The continuous focusing model 1s realized by a stationary (1m — oo ) partially
neutralizing uniform background of charges filling the beam pipe. To see this
apply Maxwell's equations to the applied field to calculate an applied charge
density:

O 2meogyp B c? k2
p =¢—  -E% = — % 59 — const

ox q

+ Unphysical model, but commonly employed since it represents the average
action of more physical focusing fields in a simpler to analyze model
- Demonstrate later in simple examples and problems given
+ Continuous focusing can provide reasonably good estimates for more realistic
periodic focusing models if kéo 1s appropriately identified in terms of
“equivalent” parameters and the periodic system 1is stable.
- See lectures that follow and homework problems for examples
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In more realistic models, one requires that quasi-static focusing fields in the
machine aperture satisfy the vacuum Maxwell equations

V-E*=0 V-B% =0
VxE®*=0 V x B* =0

+ Require in the region of the beam
+ Applied field sources outside of the beam region

The vacuum Maxwell equations constrain the 3D form of applied fields resulting
from spatially localized lenses. The following cases are commonly exploited to
optimize linear focusing strength in physically realizable systems while keeping
the model relatively simple:
1) Alternating Gradient Quadrupoles with transverse orientation
- Electric Quadrupoles (see: S2C)
- Magnetic Quadrupoles (see: S2D)
2) Solenoidal Magnetic Fields with longitudinal orientation (see: S2E)
3) Einzel Lenses (see J.J. Barnard, Introductory Lectures)

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 44



S2C: Alternating Gradient Quadrupole Focusing
Electric Quadrupoles

In the axial center of a long electric quadrupole, model the fields as 2D transverse

2D Transverse Fields

B® =0
E. = —-Gx
E, = Gy
E? =0

2V,  9E: OEj

G=24 = =¥
re ox Jy
S— = Electric Gradient
— Vg
Electrodes Outside of Circle r = r L

Electrodes: z° — y* = 772 ’ ‘/q = Pole VOltage
+ Electrodes hyperbolic r, = Pipe Radius
+ Structure infinitely extruded along z (clear aperture)
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Quadrupoles actually have finite axial length in z. Model this by taking the
gradient G to vary in s, 1.€., G = G(s) with § = 2 — Zcenter (straight section)
+ Varniation is called the fringe-field of the focusing element
+ Varnation will violate the Maxwell Equations in 3D
- Provides a reasonable first approximation in many applications
+ Usually quadrupole is long, and G(s) will have a flat central region and rapid
variation near the ends

A G(s)

Accurate fringe calculation
typically requires higher
level modeling:

+ 3D analysis

+ Detailed geometry

S = Z — Zcenter

|
|
|
|
|
|
|
|
|
|
|
1
|
i
|

k1

Axial Extent

(Quadrupole
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For many applications the actual quadrupole fringe function G(s) 1s replaced by a
simpler function to allow more idealized modeling
+ Replacements should be made in an “equivalent” parameter sense to be
detailed later (see: lectures on Transverse Centroid and Envelope Modeling)
+ Fringe functions sometimes replaced by piecewise constant G(s)
- Often called “hard-edge” approximation
+ See S3 and Lund and Bukh, PRSTAB 7 924801 (2004), Appendix C for more

details on equivalent models

A G(s)

=

Axial Extent
Quadrupole

SM Lund, NE 290H, Spring 2009

A G
JIJ ‘1
|'ll l"-
. i .
Replace Gradient i .
) III
. . | 1
Piecewise ; |
1 |
Continuous ; !
! 1
: — —
3 3
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Electric quadrupole equations of motion:
+ Insert applied field components into linear applied field equations and collect

terms
(’Ybﬁb)' / q 09¢
r + K(S)r =
(’Ybﬁb) (5) mPfEc? Ox
y (’Ybﬁb),y/ o Ii(S)y q 8¢
(V6.5) ’m’Yb )35 ¢? Oy
(5) = qG B G
mypBpc?  Bye[Bp)
OEs Ok, 2V, mYp By

= — L — = — B p—

G oy ox re B q

+ For positive/negative k the applied forces are Focusing/deFocusing in

the x- and y-planes
+ The x- and y-equations are decoupled
+ Valid whether the the focusing function x 1s piecewise constant or

incorporates a fringe model
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Quadrupoles must be arranged 1n a lattice where the particles traverse a sequence
of optics with alternating gradient to focus strongly in all directions
+ Alternating gradient necessary to provide focusing in both x- and y-planes
+ Alternating Gradient Focusing often abbreviated “AG” and 1s sometimes
called “Strong Focusing”
+ Parameters should be tuned with particle properties and oscillation phases for
proper operation
- F (Focus) 1n plane placed where excursions (on average) are small
- D (deFocus) placed where excursions (on average) are large
- O (drift) allows axial separation between elements
+ Focusing lattices often (but not necessarily) periodic
- Periodic expected to give optimal efficiency
+ Drifts between F and D quadrupoles allow space for:
acceleration cells, beam diagnostics, vacuum pumping, ....
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Example Quadrupole FODO periodic lattices with piecewise constant .
+ FODO: [Focus drift(O) DeFocus Drift(O)] has equal length drifts and same
length F and D quadrupoles
+ FODO is simplest possible realization of “alternating gradient” focusing
- Can also have thin lens limit of finite axial length magnets in FODO lattice

H;J?(S) i i (H‘T :__j_f_{’_y)_ __________________ i R -
d { d
F Quad |- F;L-I -—i--l -
| , ' ' . -
. D Quad i 5
o ;
S A Y -
- Ly - d = (1—1n)Ly/2
| Lattice Period |

n = Occupancy € (0, 1]
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//l Example: Particle Orbits in a FODO Periodic Quadrupole Focusing Lattice:
Particle phase-space in x-x' with only hard-edge applied field

Lp=05m x=450rad/m? in Quads z(0) = 1 mm

n=05  ¢=0 Wb = const 2'(0) =0
g 1 v
= 4 2 5
o o r (scaled | shifted):
EL, e T T — —
0 1 2 3 4 5
s/ L, |Lattice Periods]
10y ——— .
T 5
S i el el A e e N
~ _‘12 B / K (scaled + shifted)\
S it vt i iy
0 1 2 3 4 5
s/ L, |Lattice Periods| 1/
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Comments on Orbits:
* Orbits strongly deviate from simple harmonic form due to AG focusing
- Multiple harmonics present

+ Orbit tends to be farther from axis in focusing quadrupoles and
closer to axis in defocusing quadrupoles to provide net focusing

+ Will find later that if the focusing is sufficiently strong that the orbit can
become unstable (see: S5)

+ y-orbit has the same properties as x-orbit due to the periodic structure and AG
focusing

*If quadrupoles are rotated about their z-axis of symmetry, then the
x- and y-equations become cross-coupled. This is called quadrupole
skew coupling (see: Appendix A)

Some properties of particle orbits in quadrupoles with £ = const
will be analyzed in the problem sets
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S2D: Alternating Gradient Quadrupole Focusing
Magnetic Quadrupoles

In the axial center of a long magnetic quadrupole, model fields as 2D transverse

2D Transverse Fields
E®=0
By =Gy

r BY=0

G- B _0B: 0B

Tp oy ox

Conducting Beam Pipe: r — 1, - Magnetlc Gradient

Poles: xy = £ B, = |BY|,=,, = Pole Field

+ Magnetic (ideal iron) poles hyperbolic
+ Structure infinitely extruded along z
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Analogously to the electric quadrupole case, take G = G(s)
+ Same comments made on electric quadrupole fringe in S2C are directly
applicable to magnetic quadrupoles

Magnetic quadrupole equations of motion:
+ Insert field components into linear applied field equations and collect terms

(V60p)’ g 0¢
’m”yb 5 52c2 O

)
ﬁ)/b/@b), / o q a¢

"4 '+ k(s)r =

!/ _|_ — k(s —
(V6.0) Y () - mAp e Oy
k(s) = G _ —G
myBre | Bp]
oB: 0B, B, MY OpC
e r - 74 —_2 B =
¢ oy ox Tp Br q

+ Equations identical to the electric quadrupole case in terms of x(s)
+ All comments made on electric quadrupole focusing lattice are immediately

applicable to magnetic quadruples: just apply different x definition in design
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S2E: Solenoidal Focusing

The field of an 1deal magnetic solenoid 1s invariant under transverse rotations
about it's axis of symmetry (z) can be expanded in terms of the on-axis field as as:

Coil (Azimuthally Symmetric)

X X X X X X X X X
EY =0
See Reiser
o 2v—1 2v—2 )
a _ EZ (=1)" 90" Buo(2) [ |x1] < Theory and Design
LT 2Ll — 1) et 2 - of Charged
v=1 Particle Beams,
o ) 82" B,o(2) [ |x1]|\>" Sec. 3.3.1
2 = Bzo(2) + Z y' 52V 9
v=1
B.o(z) = BZ(x1. =0, 2) = On-Axis Field
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For modeling, we truncate the expansion using only leading-order terms to obtain:
+ Corresponds to linear dynamics in the equations of motion

1 0B.o(z
2 0z
Bo — _laBzO(Z)y B.o(z) = B2(x1 =0, 2)
’ 2 0Oz = On-Axis Field
. — i,
Bz = Bzo(Z)
Note that this truncated expansion is divergence free:
10B,y 0 0
. Ba _ —— . _BZ — O
v 2 0z 0x) XL 9z %
but not curl free within the vacuum aperture:
a 1 82320(2) ~ ~
Vx B =o———(—Xy+y7)
19°B, 1 0*B, A
=3 8,2%(Z) r(—%xsinf + ycosf) = 5 32,02(2) rd
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Solenoid equations of motion:
+ Insert field components into equations of motion and collect terms

o ('Yb/@b)/ag/ B UJé(S) Y — wc(s) y/ _ q ol

(7605) 29 0vc”  bbe my; B7c? Ox

! w' (s we($ 0

y//+(76ﬁb)y/_|_ C()CC—l— ()519,:— 36122 gb

(765) 20 YuPhe m~;, By c® 0y

B
we(s) = 4B=0(5) = Cyclotron Frequency
m (in applied axial magnetic field)

+ Equations are linearly cross-coupled in the applied field terms

- x equation depends on y, y'
- y equation depends on x, x'
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It can be shown (see: Appendix B) that the linear cross-coupling in the applied

field can be removed by an s-varying transformation to a rotating
“Larmor” frame:

zcos(s) + ysin 5

=N
|

—zsini(s) + ycos 3

<
|

o) = [ d kL (5)

ko (s) = )

y o
T 276/660
= Larmor
wave number
~ used to denote s = s; defines
rotating frame variables initial condition
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If the beam space-charge 1s axisymmetric:

do  0¢ Or _%X_J_
ox, Ordx, Or r

then the space-charge term also decouples under the Larmor transformation and
the equations of motion can be expressed in fully uncoupled form:

/ 8 ~
74 (’Ybﬁb) 7 4 /{(s)fi: _ 361 — aqbf
(75.55) MY Bye 0T T | Will demonstrate
/ a ~ .
?]” I (’Ybﬁb) ?jl i /4:(5)3] _ q ) Y this in pl.roblems
(v mfyg’ ﬁgCQ Or r for the simple
case of:
we(s) 1° 2 we(s) = const
(s) = | in | = k(o :

+ Because Larmor frame equations are in the same form as continuous and
quadrupole focusing with a different kK, for solenoidal focusing we implicitly
work 1n the Larmor frame and simplify notation by dropping the tildes:

X] — XJ
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/// Aside: Notation;

A common theme of this class will be to introduce new effects and generalizations
while keeping formulations looking as similar as possible to the the most simple
representations given. When doing so, we will often use “tildes” to denote
transformed variables to stress that the new coordinates have, in fact, a more
complicated form that must be interpreted in the context of the analysis being
carried out. Some examples:

+ Larmor frame transformations for Solenoidal focusing

See: Appendix B
+ Normalized variables for analysis of accelerating systems

See: S10
+ Coordinates expressed relative to the beam centroid
See: S.M. Lund, lectures on Transverse Centroid and Envelope Model

+ Variables used to analyze Ensil lenses
See: J.J. Barnard, Introductory Lectures

/1]
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Solenoid periodic lattices can be formed similarly to the quadrupole case
+ Drifts placed between solenoids of finite axial length
- Allows space for diagnostics, pumping, acceleration cells, etc.
+ Analogous equivalence cases to quadrupole
- Piecewise constant £ often used
+ Fringe can be more important for solenoids

Simple hard-edge solenoid lattice with piecewise constant K

A '

Ra(s)] | (K2 = Ky) e
S S -
| : l - ’
d/2 T 6 Td/2 i d2 d=(1—n)L,
;_. Lp --; ¢ = nLP
| Lattice Period |

n = Occupancy € (0, 1]

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 61



/// Example: Larmor Frame Particle Orbits in a Periodic Solenoidal Focusing
Lattice: # — 7’ phase-space for hard edge elements and applied fields

L,=05m x = 20 rad/m2 in Solenoids z£(0) =1 mm
n=0.5 ¢ ~0 7bPp = const 7' (0) =0
1.0 = — 3
_ 05F
S 00F-—-—--N N A e e ;
5 0S¢ .
P SR k (scaled + shifted) 1
iy - LSE — -;
20— s — e
0 1 2 3 4 5
s/ L, |Lattice Periods|
4F T T T T T

= 2f
] R il LSRRI R
g 2f : ]
S k (scaled + shifted) :
e —6F 0 E
_8 —- T E— L L 1 1 1 L T — L L T 1 L r—
0 1 2 3 4 5

S/Lp [L.‘:Lttice PeriOdS] /]
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Comments on Orbits:
* Larmor-frame orbits strongly deviate from simple harmonic form due to
periodic focusing
- Multiple harmonics present
- Less complicated that quadrupole AG focusing case when interpreted
in the Larmor frame due to the optic being focusing in both planes
+ Orbits can be transformed back into the Laboratory frame using Larmor
transform (see: Appendix B)
- Laboratory frame orbit exhibits more complicated x-y plane coupled
oscillatory structure ///
+ Will find later that if the focusing 1s sufficiently strong that the orbit can
become unstable (see: S5)
+ y-orbits have same properties as the x-orbits due to the equations being
decoupled and 1dentical in form in each plane

Some properties of particle orbits in solenoids with £ = const
will be analyzed in the problem sets
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S2F: Summary of Transverse Particle Equations of Motion

In linear applied focusing channels, without momentum spread or radiation, the
particle equations of motion in both the x- and y-planes expressed as:

(’Ybﬁb) . _ q 0
(”ybﬁb) T Ra(s)e = - mRB2e? Ox
(%ﬁb)' / _ q 0
(’Ybﬁb) Y+ Ry (s)y = - mypBEc? Oy

k. (s) = z-focusing function of lattice

Ky (s) = y-focusing function of lattice

Common focusing functions:

Continuous:
Kz(S) = Ky(s) = k%o = const

Quadrupole (Electric or Magnetic):

ka(8) = —riy(5) = (s)
Solenoidal (equations must be interpreted in Larmor Frame: see Appendix B):

kals) = iy (s) = R(s)
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It 1s instructive to review the structure of solutions of the transverse particle
equations of motion in the absence of:

Space-charge: — ~ — ~

(7.8)

Acceleration: /3, ~ const — —— 2 ~ ()

(765)

In this simple limit, the x and y-equations are of the same Hill's Equation form:

" + ke (8)x =0
'+ ky(s)y =0

+ These equations are central to transverse dynamics in conventional
accelerator physics (weak space-charge and acceleration)
- Will study how solutions change with space-charge in later lectures

In many cases beam transport lattices are designed where the applied focusing
functions are periodic:

Kz (s + Lp) = Ka(s)
Fy(s + Lp) = ky(s)
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Common, simple examples of periodic lattices:

i Periodic Solenoid

(ke = Ry P

Ka(5)

i iPeriodic FODO Quadrupole € =nly
Kl S) (Ko = —Ky) -
L _____ _']-{J —_———— _______ —
d 4 d
E Quad = —I-J:-I --I--— -
, ' -
- D Quad . >
A i
---------- —& -
- L - d=(1—n)L,/2
| o ; = (L—=n)Ly/
i atnce Perio I € — ULP/Q
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However, the focusing functions need not be periodic:

+ Often take periodic or continuous in this class for simplicity of interpretation
Focusing functions can vary strongly in many common situations:

+ Matching and transition sections

+ Strong acceleration

+ Significantly different elements can occur within periods of lattices in rings

- “Panofsky” type wide aperture quadrupoles for beam
insertion and extraction 1n a ring

Example of Non-Periodic Focusing Functions: Beam Matching Section
Maintains alternating-gradient structure but not quasi-periodic

Matching Section x-Focusing Strength

1.0F :
0.8}
; Example corresponds to

@ 0.6f : :
= : High Current Experiment
S o4 . .
2 ool Matching Section
'E:; 0.0f (hard edge equivalent)

at LBNL (2002)

—0.2}

_0-4;I||||I||||I||||I||||I||||I|||| ||||I_'

0 50. 100. 150. 200. 250. 300. 350.
S [em]
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Equations presented in this section apply to a single particle moving in a beam
under the action of linear applied focusing forces. In the remaining sections, we
will (mostly) neglect space-charge (¢ — () as is conventional in the standard
theory of low-intensity accelerators.
* What we learn from treatment will later aid analysis of space-charge effects
- Appropriate variable substitutions will be made to apply results
+ Important to understand basic applied field dynamics since space-charge
complicates
- Results in plasma-like collective response

/ll Example: We will see in Transverse Centroid and Envelope Descriptions of
Beam Evolution that the linear particle equations of motion can be applied to
analyze the evolution of a beam when image charges are neglected

r— x.=(r), x— centroid

Yy — Yo = (y)1 ¥y — centroid )
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Appendix A: Quadrupole Skew Coupling

Consider a quadrupole actively rotated through an angle 1) about the z-axis:

y A " Transforms
"Pole" Section L= L COS /(/b —I_ y S1I w
(Rotated Position) g — S]_I]_’gb —I— y Cos¢
‘)
w .«I, "Pole" Section — T a1 Q]
/ (iolrmfl P:)sition) X € COS w y S1I w
/ o Y= Zsiny + ycosy
Z l‘ T
Normal Orientation Fields
Electric Magnetic
a __ a __
E. = —Gx B, =Gy
ES = Gy B! = Gx
Y Yy
G = G(s)
= Field Gradient (Electric or Magnetic)
Note: units of G different in electric and magnetic cases Al
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Rotated Fields
Electric

Ey = FEgcosy — Egsiny  Ef =-Gi=—-G( xcosy+ysiny)
E; = EZsinYy + Ejcosy Ej= Gy= G(—zsiny +ycosy)

Combine equations, collect terms, and apply trigonometric identities to obtain:

E¢ = —Gcos(29)x — G sin(2¢)y 2sin cos Y = sin(29¢))
E; = —G'sin(2¢)x + G cos(2¢)y cos® ¢ — sin® Y = cos(2¢)
Magnetic

Bi = Bicosy — BgsinYy  Bf =Gy = G(—zsiny + ycosy)
B, = Bisiny + Bjcosy  Bj =G =G( zcosy+ysiny)

Combine equations, collect terms, and apply trigonometric identities to obtain:

B = —Gsin(2¢)x + G cos(21))y
B, = Gcos(2¢)r + Gsin(2¢)y

A2
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For both electric and magnetic focusing quadrupoles, these field component
projections can be inserted in the linear field Eqns of motion to obtain:

Skew Coupled Quadrupole Equations of Motion

(’Ybﬁb) : . B q 09
(%ﬁb) x' + kcos(2Y)x + ksin(2¢)y m% 322 o
(’Yb/@b)/ , . B q 0¢
y"! (%ﬁb) Yy — Kkcos(20)y + ksin(2y)x = m%ﬁb 2 3y

Buc[Bp]?
G

Bl Magnetic Focusing

{G Electric Focusing
H p—

System 1s skew coupled:
* x-equation depends on y, y' and y-equation on x, x' for 1 £ 0, 7, 27, - - -
Skew-coupling considerably complicates dynamics
+ Unless otherwise specified, we consider only quadrupoles with “normal”
orientation with ¢/ = ()
+ Skew coupling errors or intentional skew couplings can be important
- Leads to transfer of oscillations energy between x and y-planes

- Invariants much more complicated to construct/interpret A3
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The skew coupled equations of motion can be alternatively derived by
actively rotating the quadrupole equation of motion in the form:

7 (76/65)/ / _ q olo)
o (voBe) +le)e = my, Byc? Ox
//_|_ (/Yb/@b), / - q 8¢

(wh) . wls)y = - mypB2c? Oy

+ Steps are then identical whether quadrupoles are electric or magnetic
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Appendix B: The Larmor Transform to Express Solenoidal
Focused Particle Equations of Motion in Uncoupled Form

Solenoid equations of motion:

" (’Yb/@b),x/ B wé(s) Y — WC(S) y/ _ q ol
(7608) 290pC”  YpPbC mBRc Ox
n ('Yb/@b)ly/ 4 wé(s) " WC(S) = q ol
(7p) 2vBsc B - mypBEe? Oy
we(s) = 4B=0(s) = Cyclotron Frequency
m (in applied axial magnetic field)

To simplify algebra, introduce the complex coordinate
Note* context clarifies use of i

Z=ET+1Y 1= v—1 (particle index, initial cond, complex i)
Then the two equations can be expressed as a single complex equation
/" (’Ybﬁb), / - wé(s) ,wc(s) ! q qb ¢
2+ 2+ 211 4 5
(7650) 27 0pC Vb ObC - mypB2c 8y .
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If the potential is also axisymmetric with ¢ = ¢(r)

06 9% 09z _ Ja e
8w+18y_8rr r=alty

then the complex form equation of motion reduces to:

7 (’Yb/@b)/ Iy wé(s) -wC(S) ;o q 9o z
Z + Z +1 Z2+1 2 = — 35 5 =
Following Wiedemann, Vol II, pg 82, introduce a transformed complex variable that
1s a local (s-varying) rotation: ’ A
N rj&
=2 W) = 545
1(s) = phase-function
(real-valued) . .
Vv
) >
Z £
B2
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~

S = (Z, 4 2,“;/2 4 ii;”z_ 22) etV

and the complex form equations of motion become:

~ 1/ (’Yb/@b)/] ~/
S i (2¢ N ”ybﬁbc) i () | =

i We 5 p . wi(s) | (wB) )] ]
N i v %5b0¢ (¢ N 29 BpC " (73p) V)4
q 6’(/52
’m'ybﬁb c2orr

Free to choose the form of ?,b Can choose to eliminate imaginary terms in [ .... |
by taking:

1;’ _ e — QL” _ wé: + We (Vbﬁb),

2 BpC 2B 2¢ (7u8)?

B3
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Using these results, the complex form equations of motion reduce to:

(%ﬁb),gur( We )22: g 0oz

mry; B32¢? Or r

Or using z = & + 1y, the equations can be expressed in decoupled

F, ¢ variables in the Larmor Frame as:

B4

(), N q 09 &

+ + S Xr =
- (B) N g 09y

+ + s\ S —
T ) U = g oy

. _ k2 — wC(S)
() SKE(S)  huls) = o

= Larmor Wave-Number

Equations of motion are uncoupled but must be interpreted in
the rotating Larmor frame

+ Same form as quadrupoles but with focusing function same sign in each plane
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The rotational transformation to the Larmor Frame can be effected by integrating

. ~ W
the equation for ) = — —°
295
- 1 s s
w8=——/d§wc§ =—/d§kL§
)= 5 [ 4 wld) == [ k)

Here, S; is some value of s where the initial conditions are taken.
+* Take s = s; where axial field is zero for simplest interpretation
(see: pg B6)

Because

T We
2,8

~

the local * — y Larmor frame is rotating at %2 of the local s-varying cyclotron
frequency
+* If B,y = const, then the Larmor frame 1s uniformly rotating as is well
known from elementary textbooks (see problem sets)

B5
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The complex form phase-space transformation and inverse transformations are:

z = ze™ 5=z
Z = (Z’ + %15’2) e Z = (z’ — W'z) e~
— ) 5 — )71 ~ W
&~ CE—|—’Ly < 33—|_Zy wl:_ C :_kL
z =a" +iy 7 =d 4y 2795 BpC

Apply to:
+ Project initial conditions from lab-frame when integrating equations
+ Project integrated solution back to lab-frame to interpret solution

If the 1nitial condition S = S; 1s taken outside of the magnetic field where
B.g (Sz) — (), then:

T(s=s8;) =x(s = s;) T (s=s;)=12'(s =)
7(s =38;) =y(s=s; J (s =s;) =19 (s = s;)
Z(s = si) = 2(s = ;) Z(s=si) =2(s = si)
B6
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The solution in the laboratory frame can be expressed in component form using
the real and imaginary parts of the complex form transformations to obtain:

(2 ) [ o
wl
sinq@

kL SiIl?L

Y
\ y' ) \ —kr, cosp

0

COS 1;
0

sin QZ

—sinq;~ 0 ~\ (
kLcosw — sin
cosw 0

kLsm@b Cosw ) \

Sy K X

/

)

N—

Here we used the transforms and

— _kr

5 We
27,5
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S3: Description of Applied Focusing Fields
S3A: Overview

Applied fields for focusing, bending, and acceleration enter the equations of

motion via: E® = Applied Electric Field
B“ = Applied Magnetic Field

Generally, these fields are produced by sources (often static or slowly varying in
time) located outside an aperture or so-called pipe radius r = r,,. For example,
the electric and magnetic quadrupoles of S2:

Electric Quadrupole Magnetic Quadrupole

Hyperbolic
material
surfaces outside
pipe radius

r=Tp

¢ =V, Conducting Beam Pipe: r — 7,

o g
Electrodes Outside of Circle r = r,

2
. Tn
Electrodes: z° — y* = 73 Poles: zy =+

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 80



The fields of such classes of magnets obey the vacuum Maxwell Equations within
the aperture:

V-E*=0 V-B*=0
9, 1 0
Fe — _~ RBa B — — _FR@
VX ot VX c? Ot

If the fields are static or sufficiently slowly varying (quasistatic) where the time
derivative terms can be neglected, then the fields in the aperture will obey the
static vacuum Maxwell equations:

V-E*=0 V-B*=0
VxE*=0 VxBY=0

In general, optical elements are tuned to limit the strength of nonlinear field terms
so the beam experiences primarily linear applied fields.
+ Linear fields allow better preservation of beam quality
Removal of all nonlinear fields cannot be accomplished
+ 3D structure of the Maxwell equations precludes for finite geometry optics
+ Even 1n finite geometries deviations from optimal structures and symmetry
will result in nonlinear fields
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As an example of this, when an i1deal 2D iron magnet with infinite hyperbolic
poles is truncated radially for finite 2D geometry, this leads to nonlinear focusing
fields even in 2D:

+ Truncation necessary along with confinement of return flux in yoke

Cross-Sections of Iron Quadrupole Magnets

Ideal (infinite geometry) Practical (finite geometry)
Yy A

Hyperbolic Iron Pole Sections .
(infinite) Shaped Iron Pole Sections

(finite)
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The design of optimized electric and magnetic optics for accelerators is a
specialized topic with a vast literature. It 1s not be possible to cover this topic in
this brief survey. In the remaining part of this section we will overview a limited
subset of material on magnetic optics including:

*(see: S3B) Magnetic field expansions for focusing and bending

*(see: S3C) Hard edge equivalent models

*(see: S3D) 2D multipole models and nonlinear field scalings

*(see: S3E) Good field radius

Much of the material presented can be immediately applied to static Electric
Optics since the vacuum Maxwell equations are the same for static Electric E¢
and Magnetic B fields in vacuum.
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S3B: Magnetic Field Expansions for Focusing and Bending

Forces from transverse (B, = 0) magnetic fields enter the transverse equations

of motion (see: S1. Sa2) via:
Force: 1 ~qBpcz x BY

Field: 1 =%xBS + SIBS
Combined these give:

P} ~ —qfBycB;,
F) >~ qBycBy

Field components entering these expressions can be expanded about x| = ()
+ Element center and design orbit taken to be at x| = 0

1 2 OB 3 OB
B, =B;(0)+ —=—0)y+ —=(0)z
fffffffffffffffffffff ()5’?/()y333(>NonlinearFocus .
1 92B¢ 92 Ba 1 B¢ | crms.
Z T (0)r> Z(0 _ 20+ 1: Dipole Bend
t g O +3w5’y()w+26’y2()y ffffff i T Nownl
1 2 )B® 3 9B Quad Focus
a __ a Yy Yy
By By (O) + or (O)x—'_ (’)y (O)y Nonlinear Focus 3: Skew
+182B;j ; 2+3235 ; _I_laB:f/L(O) 2+ Quad Focus
2702 Y Toway Y Tag Y T
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Sources of undesired nonlinear applied field components include:

+ Intrinsic finite 3D geometry and the structure of the Maxwell equations

+ Systematic errors or sub-optimal geometry associated with practical trade-offs
in fabricating the optic

+ Random construction errors in individual optical elements

+ Alignment errors of magnets in the lattice giving field projections in
unwanted directions

+ Excitation errors effecting the field strength

- Currents 1n coils not correct and/or unbalanced

More advanced treatments exploit less simple power-series expansions to express
symmetries more clearly:
+ Maxwell equations constrain structure of solutions
- Expansion coefficients are NOT all independent
+ Forms appropriate for bent coordinate systems in dipole bends can become
complicated
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S3C: Hard Edge Equivalent Models

Real 3D magnets can often be modeled with sufficient accuracy by 2D hard-edge
“equivalent” magnets that give the same approximate focusing impulse to the
particle as the full 3D magnet
+ Objective 1s to provide same approximate applied focusing “kick’ to particles
with different gradient focusing gradient functions G(s)

See Figure Next Slide
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3D Magnet Stmacture ;

End of 210
Materials/Codl

of Magnet
Aperture

Jir-
=

A

o

G(z) = 3D Field Gradient,

‘ G*(z) = Hard-Edge
// o \\ Equivalent

& [z}l

| ; | >~ Field Gradient
|
MEid—Flane Transverse ¥
Strachire
, NG *
Mid- Plane Structure
Generating B**
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Many prescriptions exist for calculating the effective axial length and strength of
hard-edge equivalent models
*See Review: Lund and Bukh, PRSTAB 7 204801 (2004), Appendix C

Here we overview a simple equivalence method that has been shown to work
well-

For a relatively long, but finite axial length magnet with 3D gradient function:
5B

Take hard-edge equivalent parameters:
+ Assume z = 0 at the axial magnet mid-plane

G(z) =

Gradient: G"=G(z=0)

Axial Length: ¢ = ! O)/ dz G(z)

+ More advanced equivalences can be made based more on particle optics
- Disadvantage of such methods 1s “equivalence” changes with particle
energy and must be revisited as optics are tuned
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S3D: 2D Transverse Multipole Magnetic Fields

In many cases, it 1s sufficient to characterize the field errors in 2D hard-edge
equivalent as:

1 o0
Balwy) =7 [ d2 Bilay2)

1 o0
By(z,y) = —/ dz By(z,y, 2)

p ot Ty
2D Effective Fields 3D Fields
. . . > dz
Operating on the vacuum Maxwell equations with: 7
yields the (exact) 2D Transverse Maxwell equations : =~
0B (z,y) _ 0By (z,y) < From VxB=0
Oy ox
ox oy
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These equations are recognized as the Cauchy-Riemann conditions for a

complex field variable:

B =By + 1B, t=v—l Notation:
to be an analytical function of the complex variable: Underlines denote
_ , complex variables
2=+ 1y 1 =v-—1 P

+ Note that the x and y components are exchanged from what might be the
“expected” complex ordering in the field variable B . This is not a typo.
+ The coordinate 2z has the usual ordering

It follows that B(z) can be analyzed using the full power of the highly
developed theory of analytical functions of a complex variable.

Expand B(z) as a Laurent Series within the vacuum aperture as:

B(z) = By +iB; =

B, = const (complex)

n = Multipole Index

o0

n=1

r, = Aperture " Pipe” Radius

- n—1
B (7)
T'p
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The B,, are called “multipole coefficients” and give the structure of the field.
The multipole coefficients can be resolved into real and imaginary parts as:

Bn — bn + 1a,

b, = ”"Normal” Multipoles

a, = " Skew” Multipoles

Some algebra identifies the polynomial symmetries of the terms as:

Index Name Normal Field Components Skew Field Components
n Bx'rg_l/bn Byrg_l/bn erg_l/an Byr;j_l/an
n =1 Dipole 0 1 1 0

n =2 Quadrupole vy x x —

n =3 Sextupole 2xy 2 — y? 2 — qy? —2xy

n =4 Octupole 3x2y — 1’ 3 — 3zy°? x3 — 3zy? —37%y + y°
Comments:

+Reason for pole names most apparent from polar representation
(see following pages) and sketches of the magnetic pole structure
+Caution: In Europe, poles are often labeled with index n -1
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Comments continued:
+Normal and Skew symmetries can be taken as a symmetry definition. But this
choice makes sense for n = 2 quadrupole focusing terms:

Fy = _ngCBy = _QﬁbCBy(aZT — be)/Tp
Fy = qbpcBy = qBycBy(azy + bax) /1y

In equations of motion:
= as: r-eqn, r-focus; y-eqn, y-defocus

= bs: z-eqn, y-defocus; y-eqn, x-defocus
Magnetic Pole Symmetries (normal orientation):

Dipole (n=1) Quadrupole (n=2) Sextupole (n=3)
= n g Cﬂ

| -~.--"
=ReN
LU =657 7 <’

I

* Actively rotate structures clockwise through an angle of 7/(2n)

for skew component symmetries
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 92



Higher order multipole coefficients (larger n values) leading to nonlinear focusing
forces decrease rapidly within the aperture. To see this use a polar representation

forz, B’I’L ’r‘:\/x2_|_y2

6 = arctan|y, ]

z=x+1y =re

B, = |B,|e"" 1, = Real Const

Thus, the nth order multipole terms scale as

n—1 n—1
B (£ = |B, | L et (n=1)0+n]
A\ AT

» Unless the coefficient |B,,| s very large, high order terms in n will become
small rapidly as 7, decreases
+ Better field quality can be obtained for a given magnet design by simply
making the clear bore 7, larger, or alternatively using smaller bundles (more
tight focus) of particles
- Larger bore machines/magnets cost more. So designs become trade-off
between cost and performance.
- Stronger focusing can also be unstable (see: S5)
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S3E: Good Field Radius

Often a magnet design will have a so-called “good-field” radius = r, that the
maximum field errors are specified on.
+ In superior designs the good field radius can be around ~70% or more of the
clear bore aperture to the beginning of material structures of the magnet.
* Beam particles should evolve with radial excursions with r < 7,

rp, = Clear Bore Radius
~ Pole Radius Typical

rq = Good Field Radius
~ 70% r, Typical
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Comments:
* Particle orbits are designed to remain within radius 7'y
+ Field error statements are readily generalized to 3D since:

V-B*=0
V xB*=0

and therefore each component of B“ satisfies a Laplace equation within the
vacuum aperture. Therefore, field errors decrease when moving within a
source-free region.

— V?’B%=0

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 95



S3F: Example Permanent Magnet Assemblies

A few examples of practical permanent magnet assemblies with field contours are
provided to illustrate error field structures in practical devices

8—Rectangular Block Dipole

12—Rectangular Block Quadrupole
YA

A
AN/ \
Ry %@,

SM Lund, NE 290H, Spring 2009

8—Square Block QQuadrupole

Y

-

%

N
z

N

"E_
. ¥

s

I
¥

For more info on
permanent magnet design
see: Lund and Halbach,
Fusion Engineering Design,
32-33, 401-415 (1996)
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S4: Transverse Particle Equations of Motion with
Nonlinear Applied Fields S4A: Overview

In S1 we showed that the particle equations of motion can be expressed as:

!/ B(l
X”—I—(%ﬁb) x| = d E¢ + d 7z x B% + 17- x| X 7z
T wB) T mmBReE T myfe = myBee
q 9,
V2B 0x

When momentum spread is neglected and results are interpreted in a Cartesian
coordinate system (no bends). In S2, we showed that these equations can be
further reduced when the applied focusing fields are linear to:

(’Ybﬁb) q 0
('Ybﬁb) v ra(s)e - m2 B2 Ox
(’Ybﬁb)' _ q 0
(%ﬁb) vt ru(s)y = - mypBEc? By

where k. (s) = x-focusing function of lattice

Ky (s) = y-focusing function of lattice
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describe the linear applied focusing forces and the equations are implicitly
analyzed in the rotating Larmor frame when BY # 0.

Lattice designs attempt to minimize nonlinear applied fields. However, the 3D
Maxwell equations show that there will always be some finite nonlinear applied
fields for an applied focusing element with finite extent. Applied field
nonlinearities also result from:

+ Design idealizations

+ Fabrication and material errors
The largest source of nonlinear terms will depend on the case analyzed.

Nonlinear applied fields must be added back in the idealized model when it is
appropriate to analyze their effects
+ Common problem to address when carrying out large-scale numerical
simulations to design/analyze systems

There are two basic approaches to carry this out:
Approach 1: Explicit 3D Formulation
Approach 2: Perturbations About Linear Applied Field Model

We will now discuss each of these in turn
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S4B: Approach 1: Explicit 3D Formulation

This 1s the simplest. Just employ the full 3D equations of motion expressed in
terms of the applied field components E“, B¢ and avoid using the focusing
functions K, Ky

Comments:
+ Most easy to apply in computer simulations where many effects are
simultaneously included
- Simplifies comparison to experiments when many details matter
for high level agreement
+ Simplifies simultaneous inclusion of transverse and longitudinal effects
- Accelerating field IV, can be included to calculate changes in 3p, Vb
- Transverse and longitudinal dynamics cannot be fully decoupled in
high level modeling — especially try when acceleration is strong in
systems like injectors
+Can be applied with time based equations of motion (see: S1)
- Helps avoid unit confusion and continuously adjusting complicated
equations of motion to identify the axial coordinate s appropriately
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S4C: Approach 2: Perturbations About Linear Applied Field Model
Exploit the linearity of the Maxwell equations to take:

1 =EllL + oE]
B = B%|, + 6B°

where
a B¢ are the linear field components Koy, K
Lle, B incorporated in S
to express the equations of motion as:
/
2 4 (P)/b/@b) v 4 ke = q SE® _ q SBY + q 5Bayl
(75p) : myfic: T mywBe Y mywfe C
g 09
m; Bic? Ox
y// _I_ (ﬁ)/bﬁb),y/ _I_ K y — q 5Ea _|_ q 5Ba L q 5BafIJ,
(765p) ommBie Y mmBe T mpfee C

q 9¢
my; By c? Oy
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This formulation can be most useful to understand the effect of deviations from
the usual linear model where intuition is developed

Comments:
+ Best suited to non-solenoidal focusing
- Simplified Larmor frame analysis for solenoidal focusing is only valid
for axisymmetric potentials ¢ = ¢(r) which may not hold in the
presence of non-ideal perturbations.
- Applied field perturbations JE , dB* would also need to be projected
into the Larmor frame
+» Applied field perturbations 0E , 0B® will not necessarily satisty the
3D Maxwell Equations by themselves
- Follows because the linear field components E7 |1, B*|L
will not, in general, satisfy the 3D Maxwell equations by themselves
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S5: Linear Transverse Particle Equations of Motion without

Space-Charge, Acceleration, and Momentum Spread
SSA: Hill's Equation

Neglect:
* Space-charge effects: 9¢/0x ~ 0
» Nonlinear applied focusing and bends: E®, B® have only

* Acceleration: 7y > const linear focus terms
» Momentum spread effects: v.; >~ BpC

Then the transverse particle equations of motion reduce to Hill's Equation:

z"(s) + k(s)x(s) =0

x = L particle coordinate
(i.e.,  or y or possibly combinations of coordinates)
s = Axial coordinate of reference particle

_d
 ds
k(s) = Lattice focusing function (linear fields)

/
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For a periodic lattice:
k(s + Lyp) = k(s)
L, = Lattice Period

/l/ Example: Hard-Edge Periodic Focusing Function

s/ L, [Lattice Periods] ///
For a ring (1.e., circular accelerator), one also has the “superperiod” condition:

k(s +C) = k(s)
C = NL, = Ring Circumfrance

N = Superperiod Number

+ Distinction matters when there are (field) construction errors in the ring
- Repeat with superperiod but not lattice period
- See lectures on: Particle Resonances
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/// Example: Period and Superperiod distinctions for errors in a ring

* Magnet with systematic defect will be felt every lattice period
X Magnet with random (fabrication) defect felt once per lap

Lattice
Period

Sector .
%k K

One Lattice Period

Ring Lattice: 12 Periods * .
Triplet

*
(SIS-18, GSI) Quadrupoles A

/]
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S5B: Transfer Matrix Form of the Solution to Hill's Equation

Hill's equation is linear. The solution with 1nitial condition:

(s =s;) = x(s;) s = s; = Axial location
r'(s = s;) = 2/ (s;) of initial condition

can be uniquely expressed in matrix form (M 1s the transfer matrix) as:

Dy | =Mk | T

-[ e S [

Where C'(s|s;)and S(s|s;) are “cosine-like” and “sine-like” principal
trajectories satisfying:

C"(s|s;) + k(s)C(s]s;) =0 C(silsi) =1  C'(s4]s:) =0

S (s]s;) + k(s)S(s]|s;) =0 S(silsi) =0  S'(si]s:) =1
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Transfer matrices will be worked out in the problems for a few simple focusing
systems discussed in S2 with the additional assumption of piecewise constant x(s)

1l s—s;
MGsls) = | o 5|

2) Continuous Focusing: k = kjq = const > 0

sls.) = cos|kgo(s — si)] % sin[kgo(s — s;)]
M(s|s:) [ —kgo sinlkgo(s — s;)] coslkgo(s — s;)] ]

3) Solenoidal Focusing: k = & = const > 0
Results are expressed within the rotating Larmor Frame
(same as continuous focusing with reinterpretation of variables)

o) — cos[Vi(s — 5;)] \/1E sin[VA(s — si)] }
M) { —VEsin[Vi(s — s;)]  cos[Vi(s — s;)
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4) Quadrupole Focusing-Plane: k = k£ = const > 0
(Obtain from continuous focusing case)

o) — cos[Vi(s — 5;)] \/1E sin[VA(s — si)] }
M) { —VEsin[VE(s — 51)]  cos[V/A(s — 5,)]

5) Quadrupole DeFocusing-Plane: x = —&k = const < 0
(Obtain from quadrupole focusing case with 5 _, ;& _ /"7 )

cosh[v/i(s — s;)] % sinh[v/A(s — s;)]
M(sl|s;) = _ _ S
Visinh[Vi(s — s;)]  cosh[vVia(s — s;)]
1
6) Thin Lens: k(s) = —=d(s — sp)
/ so = const = Axial Location Lens
f = const = Focal Length
d(x) = Dirac-Delta Function
_ 1 0
M lsy) = | Ly |
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S5C: Wronskian Symmetry of Hill's Equation

An important property of this linear motion is a Wronskian invariant/symmetry:

C(slsi)  S(s]si)
C'(slsi) 5(slsi)

= C(s|s;)5"(s|s;) — C'(s]s;)S(s]s;) = 1

/// Proof:  Abbreviate Notation C'=C(s|s;) etc.

W (s|s;) = det M(s|s;) = det

Multiply Equations of Motion for C and S by -S and C, respectively:

—S(C"+kC)=0
+C(S" +kS)=0

Add Equations: 0
CS" — SC” + K(CS / SC) =0
d
— d_T/;/ =0 —> W = const

Apply initial conditions:

Wi(s)=W(s;)=CiSi —C!S;=1-1-0-0=1 /1
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/Il Example: Continuous Focusing: Transfer Matrix and Wronskian

k(s) = k?&o = const > 0
Principal orbit equations are simple harmonic oscillators with solution:
C(s|s;) = coslkgo(s — s;)] C'(s|s;) = —kposinlkgo(s — s;)]

Siﬂ[kﬁo(s — Sz)] S,(S
kso

S(s|s;) = s;) = cos|kgo(s — S;)]

Transfer matrix gives the familiar solution:

[xcs) ]_ { coslkso(s —5)]  elkals) “() ]

—kpo sinlkgo(s — si)] cos[kgo(s — s;)] '(s:)

Wronskian invariant 1s elementary:

W = cos”[kgo(s — )] + sin®[kgo(s — s:)] = 1
7
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S35D: Stability of Solutions to Hill's Equation in a Periodic Lattice

The transfer matrix must be the same in any period of the lattice:
M(s + Lp|si + Lp) = M(s|s;)
For a propagation distance s — s; satisfying
NL,<s—s <(N+1)L, N=0,1,2,---
the transfer matrix can be resolved as
M(s|s;) = M(s — NLp|s;) - M(s; + NLy|s;)

= M(s — NL,|s;) - [M(s; + Lp|s:)]"
Residual N Full Periods

For a lattice to have stable orbits, both x(s) and x'(s) should remain bounded on
propagation through an arbitrary number N of lattice periods. This is equivalent
to requiring that the elements of M remain bounded on propagation through any
number of lattice periods:

lim |1\/IN ii| < oo == Stable Motion

N —o00

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 110



Clarification of stability notion: Unstable Orbit

100E -
R L,=0.5m
£
= 50 N = 0.5
-100f_ . v _ _ _ _
- 1506 - - - - = - = - . - - - - A K =
0 5 10 15 20
s/ L, [Lattice Periods] 48 where K # 0
600 —— .
0 otherwise
0 5 10 15 20 Fian
s/ L, [Lattice Periods] 7(0) =0
- 1 1
Forenergetic g7 — ~4/2 4 “ k2?2 ~ Large, but # const

particle: 2 2
where |2| small, |z| large
where || small, |2'| large
The matrix criterion corresponds to our intuitive notion of stability: as the

particle advances there are no large oscillation excursions in position and angle.
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To analyze the stability condition, examine the eigenvectors/eigenvalues of M for
transport through one lattice period:

M(s; + Ly|s;) - E = AE

E = Eigenvector

A = Eigenvalue

+ Eigenvectors and Eigenvalues are generally complex
+ Eigenvectors and Eigenvalues generally vary with s;
+ Two independent Eigenvalues and Eigenvectors

- Degeneracies special case

Derive the two independent eigenvectors/eigenvalues through analysis of the
characteristic equation:  Apbreviate Notation

C(SZ‘ —|—Lp‘8i) S(SZ —|—Lp|8i) _ c S
C/(Si—l—Lp|8i) S/(SZ‘—I—Lp|SZ') I N G

Nontrivial solutions exist when:

det[ C—-—A S

M(s; + Lplsi) = [

C’ Sh— A
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But we can apply the Wronskian condition:
CS'—SC' =1

and we make the notational definition

C+S8" =TrM = 2cosa

The characteristic equation then reduces to:

1
A2 —2\cosog+1=0 COS 0 = §Tr M(s; + Ly|s;)

+ The use of 2 cosog to denote Tr M is in anticipation of later results
(see S6) where 00 is identified as the phase-advance of a stable orbit

There are two solutions to the characteristic equation that we denote A+

A:I: — COS Oy + \/(}()S2 00 — 1 = COS O :tZSIIlO'O — e:IZ’LUO

E_ = Corresponding Eigenvectors i =+v—1

*Note that: A A_ =1
Ar =1/A_
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Consider a vector of initial conditions:

[i'(f§3> ] - [ H

The eigenvectors K+ span two-dimensional space. So any initial condition
vector can be expanded as:

Ly

[ CB;L ] :Oé_|_E_|_ -+ a_E_

a4+ = Complex Constants

Thenusing ME, = A\ E.

Ly

M™ (s; + Ly|s;) [ o ] =a;AYE; + a AVE_

(

o lim AN .. .
Therefore, if N oo 1s bounded, then the motion 1s stable. This will always

be the case if |\, | < 1, corresponding to g real with |cosog| <1
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This implies for stability or the orbit that we must have:

1 1
5 | Trace M(s; + Lp|s;)| = §|C(si + Lylsi) + S'(s; + Lypl|si)|

= |cosog| <1

In a periodic focusing lattice, this important stability condition places restrictions
on the lattice structure (focusing strength) that are generally interpreted in terms
of phase advance limits (see: S6).
* Accelerator lattices almost always tuned for single particle stability to
maintain beam control
- Even for intense beams, beam centroid approximately obeys single
particle equations of motion when image charges are negligible
*Space-charge and nonlinear applied fields can further limit particle stability
- Resonances: see: Particle Resonances ....
- Envelope Instability: see: Transverse Centroid and Envelope ....
- Higher Order Instability: see: Transverse Kinetic Stability
+We will show (see: S6) that for stable orbits gy can be interpreted as the
phase-advance of single particle oscillations
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/// Example: Continuous Focusing Stability
k(s) = k?&o = const > 0
Principal orbit equations are simple harmonic oscillators with solution:
C(s|s;) = coslkgo(s — s;)] C'(s|s;) = —kgo sin[kgo(s — s;)]
sin[kﬁg(s — Sz)]

S(s|s;) = T S'(s]s;) = cos[kgo(s — ;)]

Stability bound then gives:
1
5 [ Trace M(s; + Lp|si)| = =|C(s; + Lp|si) + S"(s; + Lyp|s;)|

= | cos(kgo(s — si)| <1

DO | —

* Always satisfied for real kgg
+Confirms known result using formalism: continuous focusing stable

- Energy not pumped into or out of particle orbit ///

The simplest example of the stability criterion applied to periodic lattices will be
given in the problem sets: Stability of a periodic thin lens lattice
+ Analytically find that lattice unstable when focusing kicks sufficiently strong
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More advanced treatments

* See: Dragt, Lectures on Nonlinear Orbit Dynamics, AIP Conf Proc 87 (1982)
show that symplectic 2x2 transfer matrices associated with Hill's Equation have
only two possible classes of eigenvalue symmetries:

1) Stable 2) Unstable. [attice Resonance
b,y g mhy g hy=yy e
+ =€ -

L % -
\ 1 Re ?"t
+

o, 1/, = (177, e
- B _ —
Oceurs for- Occurs in bands when focusing
' strength 1s increased beyond
0 < g9 < 180°/period oo = 180° /period

+ Limited class of possibilities simplifies analysis of focusing lattices
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S6: Hill's Equation: Floquet's Theorem and the
Phase-Amplitude Form of the Particle Orbit
S6A: Introduction

In this section we consider Hill's Equation:

z"(s) + k(s)x(s) =0

subject to a periodic applied focusing function

w(s + Ly) = (5)
L, = Lattice Period

» Many results will also hold in more complicated form for a non-periodic #(S)
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S6B: Floquet's Theorem

Floquet's Theorem (proof: see standard Mathematics and Mathematical Physics Texts)

The solution to Hill's Equation x(s) has two linearly independent solutions that

b d as: .
can be expressed as ; \/_—1

7

_ T4 S 1
z1(s) = w(s)e §Tr M(s; + Ly|s;) = cos oy
=

T2 (S) (S)e_i“s

= const = Characteristic Exponent
Where w(s) is a periodic function:

w(s + L) = w(s)

+ Theorem as written only applies for M with non-degenerate eigenvalues. But
a similar theorem applies in the degenerate case.
+ A similar theorem 1s also valid for non-periodic focusing functions
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S6C: Phase-Amplitude Form of Particle Orbit

As a consequence of Floquet's Theorem, any (stable or unstable) nondegenerate
solution to Hill's Equation can be expressed in phase-amplitude form as:

x(s) = A(s) cosp(s) A(s) = Amplitude Function
A(s+ L,) = A(s) Y (s) = Phase Function

Derive equations of motion for A, 1) by taking derivatives of the
phase-amplitude form for x(s):

x = Acos
' = A’ cosyp — Ay’ sin
"= A" cosp — A sinp — Ay sinp — Ay’ cosy
then substitute in Hill's Equation:

"+ kx = [A" + KA — AY'*] cosp — [2A"Y + Ay siny =0
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" + kx = [A" + KA — AY'*] cosp — 24"y + AyY"]siny = 0

We are free to introduce an additional constraint between A and v :
* Two functions A, 1 to represent one function x allows a constraint
Choose:

Eq. (1) | 2A"Y' + AyY" =0 —  Coefficient of sin 1 zero

Then to satisfy Hill's Equation for all ¥ the, coefficient of cos ¢’ must also
vanish giving:

BEq. 2) | A" + kA — AP =0 —  Coefficient of cos1) zero
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Eq. (1) Analysis (coefficient of gin ) ): 2A"Y)" + AV =0

Simplify:

( A2 ) ' Will show later
Ve 0 A # 0  that this assumption

met for all s
— (A2@b,), = O

QA,Q/Jl—I—Aw” —

Integrate once:

A%y = const

One commonly rescales the amplitude A(s) in terms of an auxiliary amplitude
functions w(s):

A(s) = Ajw(s) A; = const = Initial Amplitude
such that
wyy' =1

This equation can then be integrated to obtain the phase-function of the particle:

S d~
P(s) =1 + / w2(85)
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Eq. (2) Analysis (coefficient of cos) ):

With the choice of amplitude rescaling, wa' = 1 and Eq. (2) becomes:

144 1
w —|—/<:w——3
w

0

A" + KA — AY? =0

Floquet's theorem tells us that we are free to restrict w to be a periodic solution:

w(s + L) = w(s)

Reduced Expressions for x and x':

Using A = A;w and %y = 1:

x = Acos

r' = A cosy — Ay’ sinp

xr = A;wcos

A

' = A;w cosy — —sin

w
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S6D: Summary: Phase-Amplitude Form of Solution to Hill's Eqn

r(s) = Ajw(s) cosh(s) A; = const = Initial
, , A; Amplitude
z'(s) = Ayw'(s) cos(s) — w(s) sin ¢(s) y; = const = Initial Phase

where w(s) and ¥(S) are amplitude- and phase-functions satisfying:

Amplitude Equations Phase Equations
W' () + K(s)u(s) — 5 =0 ¥(5) = o3
w(s + Ly) = w(s) o) = vt [ o
wis) >0 ¥ (s) = i + Ay(s)

Initial ( s = S; ) amplitudes are constrained by the particle initial conditions as:

x(s = s;) = A;w; cos Wi

or T’ (s = 8;) = Ajw. cosh; — —Z sin 1);
A;cosp; = x(s = s;)/w; w; = w(s = s;)
Aisint; = x(s = s)w; — 2’ (s = s;)w; w; = w'(s = s;)
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S6E: Points on the Phase-Amplitude Formulation
1) w(s) can be taken as positive definite
w(s) >0

/l] Proof: Sign choices in w:

Let w(s) be positive at some point. Then the equation:

! 1
w'+rw—— =0
w

Insures that w can never vanish or change sign. This follows because whenever w
becomes small, w'’ ~ 1 / w? > 0 can become arbitrarily large to turn w before

it reaches zero. Thus, to fix phases, we conveniently require that w > 0. 1)

*Proof verifies assumption made in analysis that A = A;w # 0

+Conversely, one could choose w negative and 1t would always remain negative
for analogous reasons. This choice 1s not commonly made.

» Sign choice removes ambiguity in relating initial conditions x(s;), x'(s;)

to A;, 1
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2) w(s) is a unique periodic function
+ Can be proved using a connection between w and the principal orbit functions

C and S (see: Appendix C and S7)
+ w(s) can be regarded as a special, periodic function describing the lattice

3) The amplitude parameters

w; = w(s = s;)

/

0 -

i ’LU/(SZ)

depend only on the periodic lattice properties and are independent of the particle

initial conditions x(s;), '(s;)

4) The phase-advance

Avls) = / e

depends on the choice of initial condition s; . However, the phase-advance
through one lattice period

sithe (3
MG+ L) = [ o

7
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Will be independent of s; since w is a periodic function with period L,
+ Will show that (see later in this section)
AY(s; + Ly) = o9

is the undepressed phase advance of particle oscillations

5) w(s) has dimensions [[w]] = Sqrt[meters]
+ Can prove inconvenient in applications and motivates the use of an alternative
“betatron” function (3

with 5(s5) = w?(s)]] = meters (see: S7 and S8)

6) On the surface, what we have done: Transform the linear Hill's Equation to a
form where a solution to nonlinear axillary equations for w and  are needed via
the phase-amplitude method seems insane ..... why do 1t?
+ Method will help i1dentify the useful Courant-Snyder invariant which will aid
interpretation of the dynamics (see: S7)
+ Decoupling of initial conditions in the phase-amplitude method will help
simplify understanding of bundles of particles in the distribution
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S6F: Relation between Principal Orbit Functions and
Phase-Amplitude Form Orbit Functions

The transfer matrix M of the particle orbit can be expressed in terms of the

principal orbit functions C and S as (see: S4):

2 |- [ 50 | - [ G S ]|

x'(s;)

|

Use of the phase-amplitude forms and some algebra identifies (see problem sets):

C(s|s;) = w@gj) cos Ap(s) — wiw(s) sin A(s)
S(s|s;) = wyw(s) sin A(s)

(sls) = (W) oS s) — ! wiw'(s) | sin S
/(o) = . Y cos Aus) = s o i’ (s) ) sin A(
S'(s|s;) = wu(];) cos A(s) + w;w' (s) sin Av(s)

* ds wi = w(s = ;)
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//l Aside: Alternatively, it can be shown (see: Appendix C) that w(s) can be related
to the principal orbit functions calculated over one Lattice period by:

S5(s]si)
S(Sz -+ Lp‘si)

S SZ'—|-L i
1 ( . plSi)
S11 O

w?(s) = B(s) =sinoy

2

S(slsi)

cosog — C(s|s;)
S(SZ’ + Lp|Sz)

C(s]si) +

The formula for o in terms of principal orbit functions 1s useful:
+ 09 (phase advance, see: S6G) 1s often specified for the lattice and the
focusing function /4;(3) is tuned to achieve the specified value
+ Shows that w(s) can be constructed from two principal orbit integrations over
one lattice period
- Integrations must generally be done numerically for C and S
- No root finding required for initial conditions to construct periodic w(s)
- 8; can be anywhere in the lattice period and w(s) will be independent
of the specific choice of s;
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» The form of w?*(s) suggests an underlying Courant-Snyder Invariant
(see: S7 and Appendix C)
»w? = (3 can be applied to calculate max beam particle excursions in the
absence of space-charge effects (see: S8)
- Useful in machine design
- Exploits Courant-Snyder Invariant
/1]
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S6G: Undepressed Particle Phase Advance

We can now concretely connect o for a stable obit to the advance in particle
oscillation phase A1) through one lattice period:

From S5D:

1
COS Oy = §Tr 1\/1(8Z -+ Lp‘si)

Apply the principal orbit representation of M

1r B/I(SZ -+ Lp|SZ) = O(SZ —+ Lp|82) + S/(Si + Lp|8i)
and use the phase-amplitude identifications of C and S' calculated in S6F:

1 fw(s; + L w;
Tr M(s; + Lp|s;) = > ( ( — p) 4 ol 1 L )) cos AY(s; + Ly)
7 ) p

1
+ 3 (ww'(s; + L) — wjw(s; + Lyp)) sin A(s; + Ly)
By periodicity:
w(s; + Lp) = w(s;) = w; coefficient of cos Ay =1
/ / / — : :
W' (s; + Lp) = w'(s;) = w; coefficient of sin Ay =0
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Applying these results gives:

1
COS 0g = COS Aw(si + Lp) — §T1' M(Sz =+ Lp|3i)

Thus, 00 1s identified as the phase advance of a stable particle orbit through one
lattice period:

sithe (g
e

7

+ Again verifies that 0¢ 1s independent of s; since w(s) 1s periodic with period
Ly
+ The stability criterion (see: S5)
1
§|Tr M(s; + Lyp|s;)| = |cosap| < 1

1s concretely connected to the particle phase advance through one lattice
period providing a useful physical interpretation

Consequence:

Any periodic lattice with undepressed phase advance satisfying
o9 < 7/period = 180° /period

will have stable single particle orbits.
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Discussion:

The phase advance 0g 1s an extremely useful dimensionless measure to
characterize the focusing strength of a periodic lattice. Much of conventional
accelerator physics centers on focusing strength and the suppression of resonance
effects. The phase advance 1s a natural parameter to employ in many situations to
allow ready interpretation of results in a generalizable manner.

We present phase advance formulas for 0o for several simple classes of lattices to
help build intuition on focusing strength:

1) Continuous Focusing Several of these

2) Periodic Solenoidal Focusing will be derived

3) Periodic Quadrupole Doublet Focusing in the problem sets
- FODO Quadrupole Limit

* Lattices analyzed as “hard-edge” with piecewise-constant £(s)
and lattice period L,
+ Results are summarized only with derivations guided in the problem sets.

4) Thin Lens Limits
- Useful for analysis of scaling properties
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1) Continuous Focusing

“Lattice period” [, D 1s an arbitrary length for phase accumulation
Parameters:

k(s) = kgo = const > 0
L, = Lattice Period

kgo = Strength

A ) !
Fox(8) (K = Ky = kﬁo — COHSt)i 2
| ; 50
-
- L, - i
Lattice Period

Calculation gives:

o) — kﬁoLp

+ Always stable
- Energy cannot pump into or out of particle orbit
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Rescaled Principal Orbit Evolution:
L,=0.5m I: z(0)=1mm  2: z(0) =0 mm
oo = 7/3 = 60° z'(0) = 0 mrad z’'(0) = 1 mrad
kso = (m/6) rad/m

10}
S osf
é 0.0}
< ~0.5F
-1.0F

3 4 5 6

2
s/ L, |Lattice Periods]

z’ [mrad]

2
s/ L, |Lattice Periods]
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Phase-Space Evolution (see also S7):

* Phase-space ellipse stationary and aligned along x, x' axes
for continuous focusing

1
¥ = —5 = ko = const
w = 1/1/kgo = const v
a=—ww =0
/

w =0
B =w* = 1/kgy = const
kgox® + x'* /kgo = € = const
7' A

T e
N

=Y
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2) Periodic Solenoidal Focusing

Results are interpreted in the rotating Larmor frame (see S2 and Appendix A)

Parameters:
%(3)‘ (Ky = Ky) ,\ L, = Lattice Period
G [ A i n € (0, 1] = Occupancy
k = Strength
; i R | "¢ Characteristics:
- d/2 ] £ df2 i df2t d=(1-n)L, nL, = Optic Length
- L - € =nkly e
: - : (1 —n)L, = Drift Length
Calculation gives:
_ L=14 _ N/
cos op = cos(20) — —— 0O sin(20) O = 5\/ELP
Ui

+ Can be unstable when f becomes large
- Energy can pump into or out of particle orbit
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Rescaled Larmor-Frame Principal Orbit Evolution:

L,=05m I: 2(0)=1mm 2: £(0) =0 mm
0o =7/3=160° (k=8558m %) #(0)=0mrad &'(0)=1mrad
=05 1.0

— 0S5

= ool
S -0SE

— -10F

0wy -1 -
-2.0E

3 4 5 6

2
s/ L, |Lattice Periods|

&' [mrad]

2
s/ L, |Lattice Periods]

* Principal orbits in ¢ — ¢/ phase-space are identical
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Phase-Space Evolution in the Larmor frame (see also: S7):
* Phase-Space ellipse rotates and evolves in periodic lattice
* § — ¢ phase-space properties same as in g — 7’
- Phase-space structure in x-x', y-y' phase space 1s complicated

vE? — 2a3F + BF* = € = const

00 02 04 06 08 10
s/ L, [Lattice Periods]

i z’ ol i T’
Ares 1™ / 7 [ \ &\\ 1™
“--._____...-"N O/ N k} N \Q N "'--..._____._--*"N
€ — const & & & L &
Horizontal Diverging Upright Converging  Horizontal
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Comments on periodic solenoid results:
* Larmor frame analysis greatly simplifies results
- 4D coupled orbit in x-x', y-y' phase-space will be much more
intricate in structure
+ Phase-Space ellipse rotates and evolves in periodic lattice
+ Periodic structure of lattice changes orbits from simple harmonic
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3) Periodic Quadrupole Doublet Focusing

Ky (s)

- (Ke=-K)) | A Parameters:
N oK T - L, = Lattice Period
..ﬁ..i..an%i.. i - n € (0,1] = Occupancy
fQuad] | | » « € [0,1] = Syncopation
W D Quad ° kK = Strength
S N R/ _ Characteristics:
r... L, ... dy=a(l-n)L, nL,/2=F/D Len
| Lattice Period | dy= (1—(12)(1—1])Lp Oé(]_ — n)Lp = Drift Len d;

1 — a)(1 —n)L, = Drift Len d»
p

Calculation gives:

1 —
cos gg = cos O cosh © + —n@(cos © sinh © — sin O cosh ©)

n 7

2
—2a(1 — o) C 277) ©?sin O sinh ©
Ui

» Can be unstable when K becomes large

- Energy can pump into or out of particle orbit
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Comments on Parameters:

+ The “syncopation” parameter & measures how close the Focusing (F) and
DeFocusing (D) quadrupoles are to each other in the lattice

a=10 — di1 =0 d2:(1_77)Lp
a € [0,1]
a=1 — dlz(l—n)Lp do =0

The range o ¢ [1/2,1] can be mapped to o € 0,1/2]
by simply relabeling quantities. Therefore, we can take:

a € |0,1/2]

* The special case of a doublet lattice with o, = 1/2 corresponds to equal drift
lengths between the F and D quadrupoles and is called a FODO lattice

Phase advance constraint will be derived for FODO case in
problems (algebra much simpler than doublet case)
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Special Case Doublet Focusing: Periodic Quadrupole FODO Lattice

Parameters: Characteristics:
L, = Lattice Period nL,/2 =£¢=F/D Len
n € (0, 1] = Occupancy (1 —1n)L,/2 = d = Drift Len
A k = Strength
K (5) (Fe = —Ky) —
I ——————. _;{ ———— e __ _
d 14 d |
F Quad = - --i-q -
' | »
. . D Quad ' 5
| € | |
S —% e
- L g d=(1—=n)Ly/2
| Lattice Period 0 — n Lp /2
Phase advance formula reduces to:
1 —
cos og = cos © cosh © + —@(COS © sinh © — sin © cosh O©)
n
N =
1 — ©=—\/|k|L
—( 5 ) ©2sin ©® sinh © 2 i
n?

+ Analysis shows FODO provides stronger focus for same integrated field

gradients than doublet due to symmetry
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Rescaled Principal Orbit Evolution:
L,=05m I: 2(0)=1mm 2: 2(0) =0 mm
gy — 7'('/3 = 600 (Ii = 39.24 m_Z) 3;”(0) — 0 mrad x/(O) — 1 mrad
n = 0.9

r |mml]

4 5 6

s/ L, |Lattice Periods]

r' [mrad]

2
s/ L, |Lattice Periods|
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Phase-Space Evolution (see also: S7):

vr? — 2axx’ 4+ B’ = e = const

s/ L, |Lattice Periods]

| |
| |
| |
M M M 1 ! M M 1 M M 1 M M ! 1 M M M
0.0 02 | 0.4 0.6 L 08 1.0
| |
| |
| |
| |
| 1

x’ ' ! ! '

Ol i A7
Ve o e

Diverging Horizontal Converging Upright Diverging

Area r
e = const

Y
&
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Comments on periodic FODO quadrupole results:

+ Phase-Space ellipse rotates and evolves in periodic lattice

- Evolution more intricate for Alternating Gradient (AG) focusing
than for solenoidal focusing in the Larmor frame
+ Harmonic content of orbits larger for AG focusing than
solenodial focusing

* Orbit and phase space evolution analogous in y-y' plane

- Simply related by an shift in s of the lattice
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Contrast of Principal Orbits for different focusing:
+ Use previous examples with “equivalent” focusing strength gy = 60°
+ Note that periodic focusing adds harmonic structure

1) Continuous Focusing

1.0
05

=
é 0.0

w3 -05¢E
~10L

2 3 4 5
s/ L, |Lattice Periods]
2) Periodic Solenoidal Focusing (Larmor Frame)

1.0E

—  05E
S oo
-05F

é -1.0 _

s -15¢

6 Lattice Perlods]
3) Penodlc FODQO Quadrupole Doublet Focusing

2 3 4
s/ L, |Lattice Periods|
SM Lund, NE 290H, Spring 2009

Simple Harmonic Oscillator

Simple harmonic oscillations
modified with additional
harmonics due to periodic
focus

Simple harmonic oscillations
more strongly modified due
to periodic AG focus
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4) Thin Lens Limits
Convenient to simply understand analytic scaling

Ke(S) = %5(5 — S0)

so = Optic Location = const
f = focal length = const

Transfer Matrix:

(o)=L ()

0

Graphical Interpretation:
x A

Thin Lens

S = &
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The thin lens limit of “thick” hard-edge solenoid and quadrupole focusing lattices
presented can be obtained by taking:

Solenoids: k= L then take lim
nf Ly n—0
2

then take lim

nfLy =0
This obtains when applied in the previous formulas:

Quadrupoles: A =

(1 - %%, thin-lens periodic solenoid
COS0p = « 7\2 .
1 - 5(1—a) (Tp) ., thin-lens quadrupole doublet
\

These formulas can also be derived directly from the drift and thin lens transfer
matrices as

Periodic Solenoid

1 1 L, L 0of 1L,
cosao—§Tr[O 1][_% 1]

Periodic Quadrupole Doublet

- [ 3 0] -0-a(%)
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Expanded phase advance formulas (thin lens type limit and similar) can be useful
in system design studies
+ Desirable to derive simple formulas relating magnet parameters to o
- Clear analytic scaling trends clarify design trade-offs
* For hard edge periodic lattices, expand formula for cos g to leading order

in © =+/|k|nL,/2

//l Example: Periodic Quadrupole Doublet Focusing:

+ Expand previous formula

(nkLy)? 2 1)
=1— P l—Zn)—4|la—=) (1—-n)°
COS 0 %5 U a—3 (1 —n)
where:
a :
——, Magnetic Quadrupoles .
= { 57l gnetic Quadrup G = Hard-Edge
BrelBo] Electric Quadrupoles Field Cradient
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Using these results, plot the Field Gradient and Integrated Gradient for
quadrupole doublet focusing needed for oo = 80° per lattice period

Gradient ~ |4 L}Z? ~ G
Integrated Gradient ~  p|&| LA / 2~ G

00 = 80° /(Lattice Period) Quadrupole Doublet

60., _ -
i ] 5
50.F ] 2
<O . ] -+~ E 5
; — 40t 1 B
r - ] = o :
Sen 30F | Es 4
.‘.5 i ] U i I
B8 o | | z= |
G, [ ] + = 31
10.f {
[ ] - I
O'D- l 1= 2.

7, Oceupaney [1] 77, Oceupancy [1]
+ Exact (non-expanded) solutions plotted dashed (almost overlay)
+ Gradient and integrated gradient required depend only weakly on syncopation
factor &« when o 1s near %2
+ Stronger gradient required for low occupancy 7 but integrated gradient
varies little with 7 11/
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Appendix C: Calculation of w(s) from Principal Orbit Functions

Evaluate principal orbit expressions of the transfer matrix through one lattice
period using
w(s; + Lp) = w;

/

w(si + Ly) = u]
and

sithe (g
Ap(si + Lp) = / w2(s) O

7

to obtain (see principal orbit formulas expressed in phase-amplitude form):

C(s; + Lp|s;) = cosog — w;w; sin o

S(s; + Ly|s;) = w; sin oy

w;

1
C'(si 4+ Lylsi) = — (—2 + wiw:;) sin o

S'(s; + Ly|s;) = cosog + w;w, sin oy

Cl
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Giving:

cosog — C(s; + Ly|s;)

S(Sz‘ -+ Lp‘SZ)

sin oy

/S (8i + Lpls;) sinog

Or 1n terms of the betatron formulation (see: S7 and S8) with

B =w? g =2wuw

B =
i =

2
w;

2W; W

S(Sz -+ Lp|8¢)

sin oy

, 2[cosog — C(s; + Lp|s;)]

i =

sin oy

Next, calculate w from the principal orbit expression in phase-amplitude form:

w

S

—— =sin Ay

w;w

: !
o4 S = cos A

w

SM Lund, NE 290H, Spring 2009
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Transverse Particle Equations

C2
153



Square and add equations:

( S )2 (wiC w;S)Z
+ + =1
w; W w w

+ This result reflects the structure of the underlying Courant-Snyder invariant
(see: S7)

Gives:

»_ (S o2
w=|— | 4+ (w;C+ w;S)

W;
Use w;, wg previously identified and write out result:
S2(sls:)
S(Sz + Lp‘SZ')

S(s; + L,|s;
 S(sit Lylsy)
S111 O

w?(s) = B(s) = sin oy

2

— C(s; + Lyp|s;
cosag — C(s; + p‘S)S(s\si)

S(SZ + Lp‘Sz')

Csks) +

+ Formula shows that for a given &g (used to specify lattice focusing strength),
w(s) is given by two linear principal orbits calculated over one lattice period
- Easy to apply numerically

C3
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An alternative way to calculate w(s) is as follows. 1% apply the phase-amplitude
formulas for the principal orbit functions with:

S; — S

s — s+ Ly
C(s+ Lyp|s) = cosog — w(s)w'(s) sin oy

S(s+ Lyls) = w?(s) sin og

S(s+ Lyp|s) _ Mia(s + Ly|s)

sin g0 sin g0

w?(s) = f(s) =

*» Formula requires calculation of S(s + L,|s) at every value of s within
lattice period

+ Previous formula requires one calculation of C(3| Sz‘), S(3| Sz)
for s; < s < s; + L, and any value of s;

C4
SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 155



Matrix algebra can be applied to simplify this result:

l T

S; s $; + Ly s+ L,

M(s + Lp|si + Lp) - M(s; + Lp|s)

M(sls) - Mi(s; + Ly|s) - [M(s]s;) - M7 (s]s;)]
M(s|s;) - Mi(si + Lp|s:) - M (s]s;)

M(s + Lp|3)

M(s + Lyp|s) = M(s|s:) - M(s; + Lyp|s;) - M~ (s]s:)

+ Using this result with the previous formula allows the transfer matrix to be
calculated only once per period from any initial condition

+ Using: Appl.y'Wronskian
C S . g/ _g condition:
M:(C' 5') M :<—C’ C ) det M =1

The matrix formula can be shown to the equivalent to the previous one

+ Methodology applied in: Lund, Chilton, and Lee, PRSTAB 9 064201 (2006)

to construct a fail-safe iterative matched envelope including space-charge (5
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S7: Hill's Equation: The Courant-Snyder Invariant and
Single Particle Emittance
S7A: Introduction

Constants of the motion can simplify the interpretation of dynamics in physics
+ Desirable to identify constants of motion for Hill's equation for improved
understanding of focusing in accelerators
+ Constants of the motion are not immediately obvious for Hill's Equation due
to s-varying focusing forces related to %(s) can add and remove energy from
the particle
- Wronskian symmetry is one useful symmetry
- Are there other symmetries?
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//] Mlustrative Example: Continuous Focusing/Simple Harmonic Oscillator

Equation of motion:

2
2" + kpor =0 kéo = const > 0
Constant of motion is the well-know Hamiltonian/Energy:
1 1
H = ix'z + §ké0w2 = const

which shows that the particle moves on an ellipse in x-x' phase-space with:
+ Location of particle on ellipse set by initial conditions
+ All initial conditions with same energy/H give same ellipse

'
N
Max/Min[z] € 2’ =0 /—\
Mas/Minfe] = . /2H/k2, ,rmk;o( N\
Max/Min[z'] < =0 / )
Max/Min[z'] = £v2H \ —
—/2H
/]
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Question:

For Hill's equation:
" + k(s)xr =0

does a quadratic invariant exist that can aid interpretation of the dynamics?

Answer we will find:
Yes, the Courant-Snyder invariant

Comments:
+ Very important in accelerator physics
- Helps interpretation of linear dynamics
+ Named in honor of Courant and Synder who popularized it's use in
Accelerator physics while co-discovering alternating gradient (AG) focusing
in a single seminal (and very elegant) paper:
Courant and Snyder, Theory of the Alternating Gradient Synchrotron,
Annals of Physics 3, 1 (1958).
- Christofolos also understood AG focusing in the same period using a
more heuristic analysis
+ Easily derived using phase-amplitude form of orbit solution
- Can be much harder using other methods
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S7B: Derivation of Courant-Snyder Invariant

The phase amplitude method described in S6 makes identification of the invariant
elementary. Use the phase amplitude form of the orbit:

x(s) = A;w(s) cos(s) A;y Y = 0(8;)
/ , A set by initial
x'(s) = Ajw'(s) cosp(s) — () sin 1 (s) at s = s,
where . 1
w' 4+ k(s)w — 3= 0
Re-arrange the phase-amplitude trajectory equations:
Z_ A; cos
W

wx' —w'x = A; siny
square and add the equations to obtain the Courant-Snyder invariant:

2
(E) + (wa’ —w'z)? = A (cos® ¢ + sin® 1))
w

— A7 = const
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Comments on the Courant-Snyder Invariant:
+ Simplifies interpretation of dynamics (will show how shortly)

+ Extensively used in accelerator physics

+ Quadratic structure in x-x' defines a rotated ellipse in x-x' phase space.
* Because o [T\’ , p
w|—) =wr —wax
w . . .
the Courant-Snvder invariant can be alternatively expressed as:

() [ ()] =

* Cannot be interpreted as a conserved energy!

The point that the Courant-Snyder invariant is not a conserved energy should be
elaborated on. The equation of motion:

"+ k(s)xr =0

Is derivable from the Hamiltonian d OH ,
£w T o ‘
H:lw’Z—l—lﬁ;wZ - g O — 2’ +kx =0
2 2 — 1= ——— = —kx
ds ox
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H 1s the energy: 1,

T — 533’ = Kinetic ”Energy”
1 1
2 2 V = 5/133 = Potential ”Energy”

Apply the chain-Rule with H = H(x,x';s):

dH 8H OH dx 8H dz’

ds ~ Os 3:1: ds (’9:1:’ ds
Apply the equation of motion:

d__0H d , OH

ds ox’ Ew oz

ds  Os ds ds ds ds Os 2

— | H # const

* Energy of a “kicked” oscillator with x(s) # const is not conserved
* Energy should not be confused with the Courant-Snyder invariant
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//l Aside: Only for the special case of continuous focusing (i.e., a simple
Harmonic oscillator) are the Courant-Snyder invariant and energy simply related:

Continuous Focusing:  k(s) = kgo = const

1 1
— H = 5:1:'2 + ikgon = const

1
w equation: '’ + k%ow - — = 0
W

1
— W = —— = const
kfﬁ()

2
Courant-Snyder Invariant: (E) + (ng’ —w' 33)2 = const
W

T xfz

2
had A 2:k 2
— (w) + (wx’ — w'x) 80 —I——kﬁ0

2 1 /12 1 2
= kBO (233 —+ 2/4::1: )

2H
= —— = const
kgo /l/
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Interpret the Courant-Snyder invariant:

N 2
(—) + (wx’ — w'z)* = A7 = const
w

by expanding and isolating terms quadratic terms in x-x' phase-space variables:

1
[—2 + w’2] r? + 2[—ww'|zx’ + [w?]a’? = AZ = const
w

The three coefficients 1n [...] are functions of w and w' only and therefore are
functions of the lattice only (not particle initial conditions). They are commonly
called “Twiss Parameters” and are expressed denoted as:

vz? + 202’ + Br’? = A? = const

— 1 w' (s 2:1+a2(5)
B(s) = w*(s)
a(s) = —w(s)w'(s)

* Only 2 of the three Twiss parameters are “independent”
(i.e., w, w' determine all 3)
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The area of the invariant ellipse is:
+ Apply standard formulas from Analytic Geometry or calculate

Area = / dadz’
ellipse

B WA?
VA8 = a?

= A7 = Te

where € 1s the single-particle emittance:
+ Emittance is the area of the orbit in x-x' phase-space divided by 7

7 A
l - _
[1/w? + w?]z? + 2[—ww'|zz’ + [w?]z"? =« slope — —a/f
VEY
vz 4+ 2axx’ + Bx’? =e=const | VT
Area — 7e Faa
Ay
See p.r(?blem sets Ty B .
for critical point
calculation Negative Quadrant
Critical Points Symmetrical
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/// Aside on Notation: Twiss Parameters and Emittance Units:

Twiss Parameters:

Use of a, 3, v should not create confusion with kinematic relativistic factors
* 3y, ¥ are absorbed in the focusing function K
+ Contextual use of notation unfortunate reality .... not enough symbols!

Emittance Units:

x has dimensions of length and x' is a dimensionless angle. So x-x' phase-space
area and € has dimensions [[ € ]] = length. A common choice of units is
millimeters (mm) and milliradians (mrad), e.g.,

e = 10 mm-mrad

The definition of the emittance employed is not unique and different workers use

a wide variety of symbols. Some common notational choices:
* TE— € € — € e — L

+ Write the emittance values in units with a 7, e.g.,

e = 10.5 m — mm-mrad

Use caution! Understand conventions being used before applying results! ///
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Properties of Courant-Snyder Invariant:

* The ellipse will rotate and change shape as the particle advances through the
focusing lattice, but the instantaneous area of the ellipse ( e = const )
remains constant.

+ The location of the particle on the ellipse and the size (area) of the ellipse
depends on the initial conditions of the particle.

+ The orientation of the ellipse is independent of the particle initial conditions.
All particles move on nested ellipses.

+ Quadratic in the x-x' phase-space coordinates, but 1s not the transverse particle
energy (which is not conserved).
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S7C: Lattice Maps

The Courant-Snyder invariant helps us understand the phase-space evolution of
the particles. Knowing how the ellipse transforms (twists and rotates without
changing area) 1s equivalent to knowing the dynamics of a bundle of particles.
To see this:

General s:
vz + 2azxz’ + Bx’? =€
Initial s = s;: Bi=pB(s=1s) @i =x(s=s)
— — I — e — .
’)@ZC? —+ 2()42513133; -+ ;67,37;2 — € ; = Q{(S — ’L) L; =& (S Sz)

Apply the components of the transport matrix:

5 =[5 ][ G0 Se ]2 ]

1

Invert 2x2 matrix and apply det M = 1 (Wronskian):

xI; S, -5 X
— [x,]:[_cl C ][ ,] C' = C(sl]s;), etc.

i X
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Insert expansion for x;, 33; in the 1nitial ellipse expression, collect factors of x"2,
xx', and x'*2, and equate to general s ellipse expression:

7:iS”? = 20;8'C" + B,C"? 2
+2[—7:SS" + a; (CS" + SC') — 5;CC' |z’
+[v:S* — 20, 9C + 3;C*)a"
= vz? + 2axx’ + B’

Collect coefficients of x*2, xx', and x'*2 and summarize in matrix form:

B v 7] B 812 —QC,S/ 0/2 ] B Vi ]
a | =| =885 CS"+5C" -CC" || G
e I 52 —2C'S C? | | i |

This result can be applied to illustrate how a bundle of particles will evolve from
an 1nitial location 1n the lattice subject to the linear focusing optics in the machine
using only principal orbits C, S, C', and §'
* Principal orbits will generally need to be calculated numerically
- Intuition can be built up using simple analytical results (hard edge etc)
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/// Example: Ellipse Evolution in a simple kicked focusing lattice

Y ="
Drift: [g, g]:[(l) ‘;_8’5] a=—v(s—s;)+ o
B=7i(s—5) —2a;(s — s;) + B
Thin Lens: ¢ S 1 0 v = + 20 /f + Bi) f?
focal length f [ ¢ s ] B [ -1/f 1 ] g:gﬂi/furo%

Focus

Drifi ﬂ Drifi
1 1 1 -
U | | | 5

X’I g‘l\ X’th X’Jli
X \|Q T &O 3

Diverging Converging Upright Ellipse Diverging
(Beam Waist)

For further examples of phase-space ellipse evolutions in standard lattices,

see: S6G /"
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S8: Hill's Equation: The Betatron Formulation of the Particle
Orbit and Maximum Orbit Excursions S8A: Formulation

The phase-amplitude form of the particle orbit analyzed in S6 of
z(s) = A;w(s) cos(s) [[w]] = (meters)'/?

is not a unique choice. Here, w has dimensions (meters)”\(1/2), which can render
it inconvenient in applications. Due to this and the utility of the Twiss
parameters used in describing orientation of the phase-space ellipse associated
with the Courant-Snyder invariant (see: S7) on which the particle moves, it is
convenient to define an alternative, Betatron representation of the orbit with:

= ve/B3(s) cos(s)

Betatron function: B(s) =w ( )
Emittance: € = A? = const
° ds
Phase: Y(s) = = Vi + Ay(s)

s; B(3)

* The betatron function has dimensions [[ 3 ]] = meters
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Comments:
* Use of the symbol [ for the betatron function does not result in confusion
with relativistic factors such as (3 since the context of use will make clear
- Relativistic factors often absorbed in lattice focusing function
and do not directly appear in the dynamical descriptions
» The initial phase %; will differer in the w- and betatron phase-amplitude
forms 1n order to match 1nitial conditions in x and x' at
- We do not distinguish for reasons of notational simplicity
* The change in phase A1) is the same for both formulations:

> ds 5 ds
M(S):L I R T

Add material on initial condition correspondence in future editions of notes
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From the equation for w:

w'(8) + k(s)w(s) —

w(s + L,) = w(s) w(s) >0

the betatron function is described by:

1 / 1 12 2 _
SB()8'(s) = 387(s) + K(8)8%(s) = 1
B(s+ Lp) = B(s) B(s) >0

+ The betatron function can, analogously to the w-function, as a special function
defined by the periodic lattice
+ Again, the equation is nonlinear and must generally be solved numerically

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 173



S8B: Maximum Orbit Excursions

From the orbit equation

x = /€3 CcosyY
the maximum and minimum possible particle excursions occur where:
cos) = +1 — Max[z] = /€8(s) = Vew(s)
cos) = —1 — Min[z] = —v/e8(s) = —v/ew(s)

Thus, the max radial extent of all particle oscillations Max|z] = x,,, in the beam

distribution occurs for the particle with the max single particle emittance since the
particles move on nested ellipses:

Max|e] = €,

Tm(s) = VemB(s) = Vemw(s)

+ Assumes sufficient numbers of particles to populate all possible phases
+ I'm corresponds to the min possible machine aperture to
prevent particle losses
- Practical aperture choice influenced by: resonance effects due to
nonlinear applied fields, space-charge, scattering, finite particle lifetime, ....
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From: 1

w'(s) + k(s)w(s) — NETS =0

w(s + L,) = w(s) w(s) >0

We immediately obtain an equation for the maximum locus (envelope) of radial
particle excursions ., = \/€,,w as:

x! (8) + k(8)Tm(s) — a:f’nngs) =0

Tm (s + Lp) = xm(S) Tm(s) >0

Comments:

+ Equation 1s analogous to the statistical envelope equation derived by J.J.
Barnard in the Intro Lectures when a space-charge term 1s added and the max
single particle emittance 1s interpreted as a statistical emittance

- correspondence will become more concrete in later lectures

+ This correspondence will be developed more extensively in later lectures on
Transverse Centroid and Envelope Descriptions of Beam Evolution and
Transverse Equilibrium Distributions
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S9: Momentum Spread Effects and Bending
S9A: Formulation

Except for brief digressions in S1 and S4, we have concentrated on particle
dynamics where all particles have the design longitudinal momentum:

Ps = MYp[pC = const

Realistically, there will always be a finite spread of particle momentum within a
beam slice, so we take:

Ps = po + 0p

po = mYppc = Design Momentum

op = Off Momentum

Typical values of momentum spread in a beam with a single species of particles
with conventional sources and accelerating structures:

@ ~107% —=107°

Po
The spread of particle momentum can modify particle orbits, particularly when
dipole bends are present since the bend radius depends strongly on the particle
momentum
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To better understand this effect, we analyze the particle equations of motion with

leading-order momentum spread (see: S1) effects retained:

2 (s) + 1 1—5_|_ K (S) 2(s) = o 1
R2(s)14+46  (1+0)" ~ 1+6R(s)
Kyl
y"(s) + 1y(5)ny(3) =0
( + ) Magnetic Dipole Bend
R(s) = Local Bend Radius 1 B%dipole
for design momentum pq R(5) = y[ B
(R — oo in straight sections) > P
Po
5 = op Kz, = Focusing Functions [Bp| = q
Po (using design momentum)
_ ] 1, Magnetic Quadrupoles
]2, Solenoids, Electric Quadrupoles

Neglects:
» Space-charge: ¢ — 0
* Nonlinear applied focusing: E, B“ contain only linear focus terms
* Acceleration: pg = m~p/3p = const
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In the equations of motion, it 1s important to understand that B; of the magnetic
bends are set from the radius R required by the design particle orbit
(see: S1 for details)
+ Equations must be modified slightly for electric bends (see S1)
+ y-plane bends also require modification
The focusing strengths are defined with respect to the design momentum:

( mv‘iggcz, G = —0FE;/0xr = OE, /0y = Electric Quad. Grad.
Ky = X mffﬁbc, G = 0B; /0y = 0B, /0x = Magnetic Quad. Grad.
4mqﬁ%0262, B.o = Solenoidal Magnetic Field
\ b™~b

b, Bp calculated from pg

Terms in the equations of motion associated with momentum spread ( 0 ) can be
lumped 1nto two classes:

1) Chromatic -- Associated with Focusing

2) Dispersive -- Associated with Dipole Bends
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SO9B: Chromatic Effects

Present in both x- and y-equations of motion and result from applied focusing
strength changing with deviations in momentum:

z'(s) + iziC) z(s) =0
SN R T R— o
y" () + (1163_(?)ny(8) —~0 to neglect bending terms

Ke,y = Focusing Functions
with v, Oy calculated from pg

+ Generally of lesser importance (smaller corrections) relative to dispersive
terms (S9C) except where the beam is focused onto a target (small spot) or
when momentum spreads are large

+ Lectures by J.J. Barnard on Heavy Ion Fusion and Final Focusing will
overview consequences of chromatic effects in final focus optics
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S9C: Dispersive Effects

Present in only the x-equation of motion and result from bending. Neglecting
chromatic terms:

. 1 1-§ R
)+ B e ) = T RG
********************************** Term1  Term?

Particles are bent at different radit when the momentum deviates from the design
value ( 9 % 0 ) leading to changes in the particle orbit
* Dispersive terms contain the bend radius R

Generally, the bend radii R are large and § is small, and we can take to leading
order:

R
erm 1: R21+5—|—ﬁ:$ T >~ Kyl
erm 2: 1 0R R
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The equations of motion then become:
0
R(s)

y'(s) + ky(s)y(s) =0

* The y-equation 1s not changed from the usual Hill's Equation

() + Ka(s)z(s) =

Generally, the x-equation is solved for periodic lattices by exploiting the linear

structure of the equation and linearly resolving:
z(s) = xn(s) + 2p(s)

2, = Homogeneous Solution

r, = Particular Solution

where xj, is the general solution to the Hill's Equation:

z,(8) + Ka(s)xn(s) =0

and Iy, 1s the periodic solution to:

T, =109-D D"(s) + kz(s)D(s) =

D = Disperson Function D(s+ L,) = D(s)

1
R(s)
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This convenient resolution of the orbit x(s) can always be made because the
homogeneous solution will be adjusted to match any initial condition

Note that 9 D provides a measure of the offset of the particle orbit relative to the
design orbit resulting from a small deviation of momentum ( § )

+ x(s) = 0 defines the design orbit

* [[D]] = meters

0 - D = Orbit offset in meters

/// Example: Simple piecewise constant focusing and bending lattice

L, =0.5m x =90/m? in Focusing
n=0.5 R =15m, in bend, 25% Occupancy

0o 05 1.0 1.5
s/ L, |Lattice Periods] 7
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/// Example: Dispersion broadens the x-distribution

Uniform Bundle of particles D=0 Same Bundle of partic]es D 75 0
+ Gaussian distribution of momentum
spread distorts the x-y distribution
extents in x but not in y

D=0 extent

/]
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Many rings are designed to focus the dispersion function D(s) to small values in
straight sections even though the lattice has strong bends
+ Desirable since it allows smaller beam sizes at locations near where D = 0 and
these locations can be used to insert and extract (kick) the beam into and out
of the ring with minimal losses
- Since average value of D is dictated by ring size and focusing strength
(see example next page) this variation in values can lead to D being
larger 1in other parts of the ring
+ Quadrupole triplet focusing lattices are often employed in rings since the
optics allows sufficient flexibility to tune D while simultaneously allowing

particle phase advances to also be adjusted

Lattice
~ Period

i Sector

One Lattice Period

Ring Lattice: 12 Periods '. Triplet f:\ z

(SIS-18, GSI) Quadrupoles
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/// Example: Continuous Focusing in a Continuous Bend

Ke(S) = k%o = const
R(s) = R = const
Dispersion equation becomes:
1
/! 2 _
D" + kﬁoD =7
With solution:
1
2
k2R
From this result we can crudely estimate the average value of the dispersion
function in a ring with periodic focusing by taking:
R = Avg Radius Ring
L, = Lattice Period (Focusing)
0o, = x-Plane Phase Advance

g0 L2
—  kgg ~ — — D~ 2
7 L, o R /11
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S10: Acceleration and Normalized Emittance
S10A: Introduction

If the beam 1s accelerated longitudinally in a linear focusing channel,
the x-particle equation of motion (see: S1 and S2) is:

Analogous
/ o g
" + (/%) '+ Kpx = — 3q 55 ¢ equation holds
(760s) my, By ¢ O iny

Neglects:
*Nonlinear applied focusing fields
* Momentum spread effects

Comments:
» Vb, Ob are regarded as prescribed functions of s set by the
acceleration schedule of the machine
* Variations in 7, (O due to acceleration must be included in
and/or compensated by adjusting the strength of the optics via Kz, Ky
- Scaling different for electric and magnetic optics (see: S2)
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Comments Continued:
*1In typical accelerating systems, changes in Y53 are slow and the fractional
changes in the orbit induced by acceleration are small

- Exception near an injector since the beam is often not yet energetic
*The acceleration term:

(76.5)

— >0

(76)

will act to damp particle oscillations (see following slides for motivation)

Even with acceleration, we will find that there 1s a Courant-Snyder invariant
(normalized emittance) that 1s valid in an analogous context as 1n the case without
acceleration provided phase-space coordinates are chosen to compensate for the
damping of particle oscillations
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Acceleration Factor: Characteristics of

Relativistic Factor

Yo,
Vo Bp
{ﬁb,

Relativistic Limit y 1
b
Nonrelativistic Limit 1 -3¢

Beam/Particle Kinetic Energy:

Ep(s) = (7 — 1)mc? = Beam Kinetic Energy

*Function of s specified by Acceleration schedule for transverse dynamics
*See Appendix D for calculation of &, and ~; 3, from longitudinal dynamics
and J.J. Barnard lectures on Longitudinal Dynamics

Approximate energy gain from average gradient:

Ep Zgz'—l—G(S—Si)

&; = const = Initial Energy
(G = const = Average Gradient

+Real energy gain will be rapid when going through discreet acceleration gaps

2

£ Yonc,
p = « e e . .
%m@ch, Nonrelativistic Limit, |G| < 1

Relativistic Limit, v, > 1
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Identify relativistic factor with average gradient energy gain:

Relativistic Limit: 7y > 1

L& _& G
o= mec2  mce?2 mc? '
(w0)" v 1 1
(wBe) W (B —s)+s s
Nonrelativistic Limit;: ﬁb‘ < 1
Py = \/ mc2 ch (s = 5i)
i) B 12 1
(wBe) B (B —s)+s 28

+Expect Relativistic and Nonrelativistic motion to have similar solutions

- Parameters for each case will often be quite different
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//l Aside: Acceleration and Continuous Focusing Orbits with g, = kgo = const
Assume relativistic motion and negligible space-charge:

(vw06)" W _ 1 9% _
(wB) M (Z —si) +s ox
Then the equation of motion reduces to:
z" + ! ' + k3,2 =0
& -—s)ts

This equation is the equation of a Bessel Function of order zero:

d’x 1dx Ei

- S — — = k k ~ 97

e fdf—HB 0 § = kpos + ﬁO(G 3)

Cl — const CQ — const

r = C1Jo(§) + CaYp () J, = Order n Bessel Func
1st kind

v’ = —CikgoJ1(§) — C2kpoY1(§) Y, :(Order n %essel Func
(2nd kind)
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Solving for the constants in terms of the particle initial conditions:

[ ¥ ] - [ ) ) e ] | [ . ]

r, =x(s=8;) Ei

i = kﬁO@ =&(s = s;)

Invert matrix to solve for constants in terms of initial conditions:

— [ G]=k[ et ] T

A Z;
A = kgo[Yo(&)J1(&) — Jo(€:)Y1(&)]

T, =2'(s = s;)

7

Comments:
+ Bessel functions behave like damped harmonic oscillators
- See any texts on Mathematical Physics or Applied Mathematics
+ Nonrelativistic limit solution is not described by a Bessel Function solution
- Properties of solution will be similar though (similar special function)
- The coefficient in the damping term oc 2z’ has a factor of 2 difference,
preventing exact Bessel function form
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Using this solution, plot the orbit for (contrived parameters for illustration only):

kg0 = % oo = 90° /Period E; = 1000 MeV
P L =05m G = 100 MeV /m
0) =1
z(0) = 10 mm 6 =0
z'(0) = 0 mrad Toi _ !

1+ (G/&)(s — si)

z(s) 1 ~ A Vei [ e o
hm“5[WTTWHNWWWAﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂhﬂﬂﬂ[
s/ L, [Lattice Periods]

z'(s) ;8 ™~ \/m

mmmeTwTWﬂﬂﬂﬂﬂﬂﬂﬂmﬂﬂﬂﬂnnﬂﬂﬂnﬂ
o VATV T TV

-30 s/ L, [Lattice Periods]

+ Solution shows damping: phase volume scaling ~ 1 / (’Yb @b) ~ 1 /% /1]
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S10B: Transformation to Normal Form

“Guess” transformation to apply motivated by conjugate variable arguments

(see: J.J. Barnard, Intro. Lectures)

T = /70

Then:
_ 1 ~
T = \/maz
2 = 1 ~/ l (76/66), 7
V76Bb 2 (75/3)3/2
o/ 1 1 ("Ybﬁb)/ 5! 4+ § (7bﬂb)l2 o l (W/b/@b)” 7
V5 (76/3)3/2 4 (76)%2 2 ()32
The inverse phase-space transforms will also be useful later:
T = \/m:c
= \/mx/ _|_l (W/b/@b), 7
2 \/75b)
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Applying these results, the particle x- equation of motion with acceleration
becomes:

LwB)” 1Tw)") . _ 4 99

1
"+ ke + S .
4 (whe)* 2 (10p) myg Byc? 02

Note:
*Factor of ~; (3, difference from untransformed expression in the space-
charge coupling coefficient

It 1s instructive to also transform the Possion equation associated with the space-
charge term:

0% 0* P
(@ "oy ) " e
Transform:
L 9 0\ (0% O 2
522 (a—xa—x) (a—xa—x) = WP g

O? oy 0O oy 0O 0>
a2 |\ 3 o= ~ < | = ”Yb@b o
Oy Oy 0y ) \ Oy 0y 0y
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Using these results, Poisson's equation becomes:

(o
012 6’y Yo b€0

Or defining a transformed potential gB

¢ = Vb0
0? 9%\ -
——t o= | d= _r
0x 6y €0
Applying these results, the x-equation of motion with acceleration becomes:
P [K L1 L (158)% 1 (15)" - g 09
4 (wBe)* 2 (105b) - mR B2t 0

+ Usual form of the space-charge coefficient with 75’ ﬁ? rather than 71? B
is restored when expressed in terms of the transformed potential ¢
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An additional step can be taken to further stress the correspondence between the
transformed system with acceleration and the untransformed system in the
absence of acceleration.

Denote an effective focusing strength:

Fo= k4 T () 1 (wh)”

1
4 (w62 2 (hs)

k4 Incorporates acceleration terms beyond -y, 33 factors already included in the
definition of ., (see: S2):

( mfyzcﬁ;%% G = —0FE;/0x = OE, /0y = Electric Quad. Grad.
Ky = 9 mg{%bc, G = 0B; /0y = 0B /0r = Magnetic Quad. Grad.
€ 9B:0__  B., = Solenoidal Magnetic Field
myiBic

The transformed equation of motion with acceleration then becomes:

¢ 99
mry; 322 0%
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The transformed equation with acceleration has the same form as the equation in

the absence of acceleration. If space-charge is negligible (0¢/0x | ~ 0) we
have:

Accelerating System Non-Accelerating System

~1! ~ o~ !
' +r,x=0 = T + kK =0

Therefore, all previous analysis on phase-amplitude methods and Courant-Snyder
invariants associated with Hill's equation in x-x' phase-space can be immediately
applied to & — Z’ phase-space for an accelerating beam

- N 2
T
S N P
(~—> + (W' — W, T)° = € = const

mé = Area traced by orbit = const
in Z-Z' phase-space

+ Focusing field strengths need to be adjusted to maintain periodicity of K. in
the presence of acceleration

- Not possible to do exactly, but can be approximate for weak acceleration
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S10C: Phase Space Relation Between Transformed and
UnTranstormed Systems

It 1s instructive to relate the transformed phase-space area in tilde variables to the
usual x-x' phase area:

di @ dz’ = |J|dx @ da’

where J is the Jacobian: Inverse transforms
derived previously:
- 0% ox -
J =det | 9z, 0z’ T =/
— oz’ oz’ | (’Ybﬁb)/
- 0r 0 =+ !
; N ; V50b)
=det | 1 (16’ = Y
3 Vel

Thus:

dz @ dz’ = v 0 do @ dz’
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Based on this area transform, if we define the (instantaneous) phase space area of
the orbit trance in x-x' to be 7€,  “regular emittance”, then this emittance is
related to the “normalized emittance” €, in & — 2’ phase-space by:

g:v — ﬁ)/b/@beaz
= Normalized Emittance = ¢,,,

»Factor 7,3, compensates for acceleration induced damping in particle orbits
*Normalized emittance 1s very important in design of lattices to transport
accelerating beams
- Designs usually made assuming conservation of normalized emittance
*Same result that J.J. Barnard motivated in the Intro. Lectures using alternative
methods
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Appendix D: Accelerating Fields and Calculation
of Changes in gamma®*beta

The transverse particle equation of motion with acceleration was derived in a
Cartesian system by approximating (see: S1):

d dx, . . na @ . 1 9¢
g(mq/W)z qE 4+ qBpcz x B +qBJv,] X Z —q/y—gz
using
d dXJ—) 2 2 [ 7 (/Ybﬁb), / ]
m— | v—— | @ mwlic® |xX| + X
dt (7 dt T T (wB)
to obtain:
/ Ba
X//_|_(’7b/65)X/: q E® o+ q 5 x BY & qb, < x5
S wB) T B T myfBhe L myfee T
q 0
v, BEc? 0%

D1
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Changes in ~;, 3 are calculated from the longitudinal particle equation of motion:

d dz 8J0)
— (my— |~ qFE! — qv.B—v,B: —
dt(fydt) 4L, q($y y:v) q@z
Term 1 Term 2 Term 3
Using steps similar to those in S1, we approximate terms:
o b V=
— =V = DpC =
Term 1: i 7% QJCQﬁb(ﬁybﬁb)l dt ©
dt dt d 3 d
dt — """ ds
Qa
Term 2: iEa ~ q 3gb
m m 0s |,_,_g

* % 1is a quasi-static approximation accelerating potential (see next pages)

dx dy
. a ay __ _ a I a ~
Term3:  —q(vy By —vyBy) = —q (dt B o B$> ~ ()
+ Transverse magnetic fields typically only weakly change particle energy and
terms can be neglected relative to others D2
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The longitudinal particle equation of motion for s, (3 then reduces to:

By (7 0p)" ~ —

qg 09¢°

mc? 0s

r=y=0

Some algebra then shows that:

Y

1

(=

) = 7 B0y

= Go(w) = By + 1563
= (1 +v80) 5653, = i Bol3,

.

Giving: L
VA olok

b mc? 0s

r=y=0

Which can then be integrated to obtain:

q
mc?

o = —5 ¢ (r =

0,z = s) + const

Bb:\/1+1/7(?
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We denote the on-axis accelerating potential as:

Vis)=¢*(x=y=0,z=2s)

+Can represent RF or induction accelerating gap fields
+See: J.J. Barnard lectures for more details

Giving:

q
= —V(s const
=3 (s) + cons

5b=\/1+1/%?

These equations can be solved for the consistent variation of (), Bp(S)

in the transverse equations of motion:

(78)
(765)

q
myp5%c?
q 9,
V2B 0%

!/ !/
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Nonrelativistic limit results

In the nonrelativistic limit:

1
’Yb21+§55

B3 <1

Giving the familiar result of a nonrelativistic particle gaining energy when falling

down a potential gradient:

1
§’m6502 ~ qp®(r

0,z = s) 4 const 3 <1

Using this result, in the nonrelativistic limit we can take in the transverse particle

equation of motion:

(15)" 1V’

(wB) 2V
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Quasistatic potential expansion

In the quasistatic approximation, the accelerating potential can be expanded in the
axisymmetric limit as:
+See: J.J. Barnard, Intro Lectures; and Reiser, Theory and Design of Charged
Particle Beams, (1994, 2008) Sec. 3.3.

6" = V() ~ gV @+ 1)+ ora V(@ 4y 4

The longitudinal acceleration also result in a transverse focusing field
OP®

aXJ_

a a
1 = L‘foc -

1 ltoc = Fields from Focusing Optics

— 0¢* — la—zV(z)X = Focusing Field from Acceleration
ox, 2022 - 5

+Results can be used to cast acceleration terms in more convenient forms. See
J.J. Barnard lectures for more details. D6
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund
Lawrence Berkeley National Laboratory

BLDG 47 R 0112
1 Cyclotron Road
Berkeley, CA 94720-8201

SMLund@Ibl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.

SM Lund, NE 290H, Spring 2009 Transverse Particle Equations 206


mailto:SMLund@lbl.gov

References: For more information see:

Earlier versions of course notes posted online (present will also be posted with
corrections):

J. Barnard and S. Lund, Intense Beam Physics, US Particle Accelerator School
Notes, http://uspas.tnal.gov/lect_note.html (2006, 2004)

Basic introduction on many of the topics covered:
M. Reiser, Theory and Design of Charged Particle Beams, Wiley
(1994, revised 2008)

Review by author (with similar perspective to notes) with material on phase advances,
lattice focusing strength, etc.

S.M. Lund and B. Bukh, Stability Properties of the Transverse Envelope
Equations Describing Intense Ion Beam Transport, Phys. Rev. Special Topics —
Accelerators and Beams (2004).

Hill's Equation, Floquet's theorem, Courant-Snyder invariants, and dispersion functions:
H. Wiedermann, Particle Accelerator Physics, Springer-Verlag (1995)
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Particle equations of motion with bends and momentum spread:
D.A. Edwards and M.J. Syphers, An Introduction to the Physics of High Energy
Accelerators, Wiley (1993).

Original, classic paper on strong focusing and Courant-Snyder invariants applied to
accelerator physics. Remains one of the best formulated treatments to date:

E.D. Courant and H. S. Snyder, Theory of the Alternating Gradient Synchrotron,
Annals Physics 3, 1 (1958).

More mathematical treatment of transfer matrices and stability

A. Dragt, Lectures on Nonlinear Orbit Dynamics, in “Physics of High Energy
Accelerators,” edited by R.A. Carrigan, F.R. Hudson, and M. Month (AIP Contf.
Proc. No. 87, New York, 1982), p. 147.

Phase-amplitude methods, Larmor frame:
J.D. Lawson, The Physics of Charged Particle Beams, Oxford University Priess
(1977).

Solenoidal focusing and the Larmor frame:
H. Wiedemann, Particle Accelerator Physics II: Nonlinear and Higher Order
Beam Dynamics, Springer (1995).
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